Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 169

1.

LRRK2 kinase activity mediates toxic interactions between genetic mutation and oxidative stress in a Drosophila model: suppression by curcumin.

Yang D, Li T, Liu Z, Arbez N, Yan J, Moran TH, Ross CA, Smith WW.

Neurobiol Dis. 2012 Sep;47(3):385-92. doi: 10.1016/j.nbd.2012.05.020. Epub 2012 Jun 2.

PMID:
22668778
2.

Inhibitors of LRRK2 kinase attenuate neurodegeneration and Parkinson-like phenotypes in Caenorhabditis elegans and Drosophila Parkinson's disease models.

Liu Z, Hamamichi S, Lee BD, Yang D, Ray A, Caldwell GA, Caldwell KA, Dawson TM, Smith WW, Dawson VL.

Hum Mol Genet. 2011 Oct 15;20(20):3933-42. doi: 10.1093/hmg/ddr312. Epub 2011 Jul 18.

3.

LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity.

Heo HY, Park JM, Kim CH, Han BS, Kim KS, Seol W.

Exp Cell Res. 2010 Feb 15;316(4):649-56. doi: 10.1016/j.yexcr.2009.09.014. Epub 2009 Sep 19.

PMID:
19769964
4.

Vacuolar protein sorting 35 (Vps35) rescues locomotor deficits and shortened lifespan in Drosophila expressing a Parkinson's disease mutant of Leucine-Rich Repeat Kinase 2 (LRRK2).

Linhart R, Wong SA, Cao J, Tran M, Huynh A, Ardrey C, Park JM, Hsu C, Taha S, Peterson R, Shea S, Kurian J, Venderova K.

Mol Neurodegener. 2014 Jun 11;9:23. doi: 10.1186/1750-1326-9-23.

5.

Thiol peroxidases ameliorate LRRK2 mutant-induced mitochondrial and dopaminergic neuronal degeneration in Drosophila.

Angeles DC, Ho P, Chua LL, Wang C, Yap YW, Ng C, Zhou Zd, Lim KL, Wszolek ZK, Wang HY, Tan EK.

Hum Mol Genet. 2014 Jun 15;23(12):3157-65. doi: 10.1093/hmg/ddu026. Epub 2014 Jan 23.

6.

Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein.

Niu J, Yu M, Wang C, Xu Z.

J Neurochem. 2012 Aug;122(3):650-8. doi: 10.1111/j.1471-4159.2012.07809.x. Epub 2012 Jun 22.

7.

LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis.

Matta S, Van Kolen K, da Cunha R, van den Bogaart G, Mandemakers W, Miskiewicz K, De Bock PJ, Morais VA, Vilain S, Haddad D, Delbroek L, Swerts J, Chávez-Gutiérrez L, Esposito G, Daneels G, Karran E, Holt M, Gevaert K, Moechars DW, De Strooper B, Verstreken P.

Neuron. 2012 Sep 20;75(6):1008-21. doi: 10.1016/j.neuron.2012.08.022.

8.

Temporal expression of mutant LRRK2 in adult rats impairs dopamine reuptake.

Zhou H, Huang C, Tong J, Hong WC, Liu YJ, Xia XG.

Int J Biol Sci. 2011;7(6):753-61. Epub 2011 Jun 9.

9.

RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk.

MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, Marder KS, Honig LS, Clark LN, Small SA, Abeliovich A.

Neuron. 2013 Feb 6;77(3):425-39. doi: 10.1016/j.neuron.2012.11.033. Erratum in: Neuron. 2013 Mar 6;77(5):994. MacCabe, Brian D [corrected to McCabe, Brian D].

10.

Loss of LRRK2/PARK8 induces degeneration of dopaminergic neurons in Drosophila.

Lee SB, Kim W, Lee S, Chung J.

Biochem Biophys Res Commun. 2007 Jun 29;358(2):534-9. Epub 2007 May 4.

PMID:
17498648
11.

Evidence that the LRRK2 ROC domain Parkinson's disease-associated mutants A1442P and R1441C exhibit increased intracellular degradation.

Greene ID, Mastaglia F, Meloni BP, West KA, Chieng J, Mitchell CJ, Gai WP, Boulos S.

J Neurosci Res. 2014 Apr;92(4):506-16. doi: 10.1002/jnr.23331. Epub 2013 Dec 24.

PMID:
24375786
12.

The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2.

Wang L, Xie C, Greggio E, Parisiadou L, Shim H, Sun L, Chandran J, Lin X, Lai C, Yang WJ, Moore DJ, Dawson TM, Dawson VL, Chiosis G, Cookson MR, Cai H.

J Neurosci. 2008 Mar 26;28(13):3384-91. doi: 10.1523/JNEUROSCI.0185-08.2008.

13.

Effects of sevoflurane on leucine-rich repeat kinase 2-associated Drosophila model of Parkinson's disease.

Shan Z, Cai S, Zhang T, Kuang L, Wang Q, Xiu H, Wen J, Gu H, Xu K.

Mol Med Rep. 2015 Mar;11(3):2062-70. doi: 10.3892/mmr.2014.2966. Epub 2014 Nov 18.

PMID:
25406035
14.

Knockdown transgenic Lrrk Drosophila resists paraquat-induced locomotor impairment and neurodegeneration: A therapeutic strategy for Parkinson's disease.

Quintero-Espinosa D, Jimenez-Del-Rio M, Velez-Pardo C.

Brain Res. 2017 Feb 15;1657:253-261. doi: 10.1016/j.brainres.2016.12.023. Epub 2016 Dec 30.

PMID:
28041945
15.

Genetic dissection reveals that Akt is the critical kinase downstream of LRRK2 to phosphorylate and inhibit FOXO1, and promotes neuron survival.

Chuang CL, Lu YN, Wang HC, Chang HY.

Hum Mol Genet. 2014 Nov 1;23(21):5649-58. doi: 10.1093/hmg/ddu281. Epub 2014 Jun 10.

PMID:
24916379
16.

Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons.

Wang D, Tang B, Zhao G, Pan Q, Xia K, Bodmer R, Zhang Z.

Mol Neurodegener. 2008 Feb 8;3:3. doi: 10.1186/1750-1326-3-3.

17.

Novel LRRK2 GTP-binding inhibitors reduced degeneration in Parkinson's disease cell and mouse models.

Li T, Yang D, Zhong S, Thomas JM, Xue F, Liu J, Kong L, Voulalas P, Hassan HE, Park JS, MacKerell AD Jr, Smith WW.

Hum Mol Genet. 2014 Dec 1;23(23):6212-22. doi: 10.1093/hmg/ddu341. Epub 2014 Jul 3.

PMID:
24993787
18.

Synphilin-1 attenuates mutant LRRK2-induced neurodegeneration in Parkinson's disease models.

Liu J, Li T, Thomas JM, Pei Z, Jiang H, Engelender S, Ross CA, Smith WW.

Hum Mol Genet. 2016 Feb 15;25(4):672-80. doi: 10.1093/hmg/ddv504. Epub 2016 Jan 6.

19.

(R1441C) LRRK2 induces the degeneration of SN dopaminergic neurons and alters the expression of genes regulating neuronal survival in a transgenic mouse model.

Weng YH, Chen CY, Lin KJ, Chen YL, Yeh TH, Hsiao IT, Chen IJ, Lu CS, Wang HL.

Exp Neurol. 2016 Jan;275 Pt 1:104-15. doi: 10.1016/j.expneurol.2015.09.001. Epub 2015 Sep 10.

PMID:
26363496
20.

Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease.

Meulener M, Whitworth AJ, Armstrong-Gold CE, Rizzu P, Heutink P, Wes PD, Pallanck LJ, Bonini NM.

Curr Biol. 2005 Sep 6;15(17):1572-7.

Supplemental Content

Support Center