Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of Cr(VI)-transformed lung cells.

Medan D, Luanpitpong S, Azad N, Wang L, Jiang BH, Davis ME, Barnett JB, Guo L, Rojanasakul Y.

PLoS One. 2012;7(5):e37045. doi: 10.1371/journal.pone.0037045.

2.

Constitutive activation of epidermal growth factor receptor promotes tumorigenesis of Cr(VI)-transformed cells through decreased reactive oxygen species and apoptosis resistance development.

Kim D, Dai J, Fai LY, Yao H, Son YO, Wang L, Pratheeshkumar P, Kondo K, Shi X, Zhang Z.

J Biol Chem. 2015 Jan 23;290(4):2213-24. doi: 10.1074/jbc.M114.619783.

3.

Epithelial-mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells.

Ding SZ, Yang YX, Li XL, Michelli-Rivera A, Han SY, Wang L, Pratheeshkumar P, Wang X, Lu J, Yin YQ, Budhraja A, Hitron AJ.

Toxicol Appl Pharmacol. 2013 May 15;269(1):61-71. doi: 10.1016/j.taap.2013.03.006.

4.

Nitric oxide-mediated bcl-2 stabilization potentiates malignant transformation of human lung epithelial cells.

Azad N, Iyer AK, Wang L, Lu Y, Medan D, Castranova V, Rojanasakul Y.

Am J Respir Cell Mol Biol. 2010 May;42(5):578-85. doi: 10.1165/rcmb.2009-0094OC.

5.

Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways.

Pratheeshkumar P, Son YO, Divya SP, Roy RV, Hitron JA, Wang L, Kim D, Dai J, Asha P, Zhang Z, Wang Y, Shi X.

Toxicol Appl Pharmacol. 2014 Dec 1;281(2):230-41. doi: 10.1016/j.taap.2014.10.008.

6.

Repression of miR-143 mediates Cr (VI)-induced tumor angiogenesis via IGF-IR/IRS1/ERK/IL-8 pathway.

He J, Qian X, Carpenter R, Xu Q, Wang L, Qi Y, Wang ZX, Liu LZ, Jiang BH.

Toxicol Sci. 2013 Jul;134(1):26-38. doi: 10.1093/toxsci/kft101.

7.

Gene 33/Mig6 inhibits hexavalent chromium-induced DNA damage and cell transformation in human lung epithelial cells.

Park S, Li C, Zhao H, Darzynkiewicz Z, Xu D.

Oncotarget. 2016 Feb 23;7(8):8916-30. doi: 10.18632/oncotarget.6866.

8.

Human bronchial epithelial BEAS-2B cells, an appropriate in vitro model to study heavy metals induced carcinogenesis.

Park YH, Kim D, Dai J, Zhang Z.

Toxicol Appl Pharmacol. 2015 Sep 15;287(3):240-5. doi: 10.1016/j.taap.2015.06.008.

9.

Superoxide-mediated proteasomal degradation of Bcl-2 determines cell susceptibility to Cr(VI)-induced apoptosis.

Azad N, Iyer AK, Manosroi A, Wang L, Rojanasakul Y.

Carcinogenesis. 2008 Aug;29(8):1538-45. doi: 10.1093/carcin/bgn137.

10.

Molecular mechanisms of hexavalent chromium-induced apoptosis in human bronchoalveolar cells.

Russo P, Catassi A, Cesario A, Imperatori A, Rotolo N, Fini M, Granone P, Dominioni L.

Am J Respir Cell Mol Biol. 2005 Dec;33(6):589-600.

11.

Nrf2/p62 signaling in apoptosis resistance and its role in cadmium-induced carcinogenesis.

Son YO, Pratheeshkumar P, Roy RV, Hitron JA, Wang L, Zhang Z, Shi X.

J Biol Chem. 2014 Oct 10;289(41):28660-75. doi: 10.1074/jbc.M114.595496.

12.

NADPH oxidase activation is required in reactive oxygen species generation and cell transformation induced by hexavalent chromium.

Wang X, Son YO, Chang Q, Sun L, Hitron JA, Budhraja A, Zhang Z, Ke Z, Chen F, Luo J, Shi X.

Toxicol Sci. 2011 Oct;123(2):399-410. doi: 10.1093/toxsci/kfr180.

13.

Anti-apoptotic proteins and catalase-dependent apoptosis resistance in nickel chloride-transformed human lung epithelial cells.

Yang YX, Li XL, Wang L, Han SY, Zhang YR, Pratheeshkumar P, Wang X, Lu J, Yin YQ, Sun LJ, Budhraja A, Hitron AJ, Ding SZ.

Int J Oncol. 2013 Sep;43(3):936-46. doi: 10.3892/ijo.2013.2004.

14.

Induction of pro-apoptotic and cell cycle-inhibiting genes in chromium (VI)-treated human lung fibroblasts: lack of effect of ERK.

Ceryak S, Zingariello C, O'Brien T, Patierno SR.

Mol Cell Biochem. 2004 Jan;255(1-2):139-49.

PMID:
14971655
15.

Comparison of gene expression profiles in chromate transformed BEAS-2B cells.

Sun H, Clancy HA, Kluz T, Zavadil J, Costa M.

PLoS One. 2011 Mar 18;6(3):e17982. doi: 10.1371/journal.pone.0017982.

16.

Assessment of the mode of action for hexavalent chromium-induced lung cancer following inhalation exposures.

Proctor DM, Suh M, Campleman SL, Thompson CM.

Toxicology. 2014 Nov 5;325:160-79. doi: 10.1016/j.tox.2014.08.009. Review.

PMID:
25174529
17.

Hexavalent chromium induces malignant transformation of human lung bronchial epithelial cells via ROS-dependent activation of miR-21-PDCD4 signaling.

Pratheeshkumar P, Son YO, Divya SP, Turcios L, Roy RV, Hitron JA, Wang L, Kim D, Dai J, Asha P, Zhang Z, Shi X.

Oncotarget. 2016 Aug 9;7(32):51193-51210. doi: 10.18632/oncotarget.9967.

18.

Induction of apoptosis in the lung but not in the liver of rats receiving intra-tracheal instillations of chromium(VI).

D'Agostini F, Izzotti A, Bennicelli C, Camoirano A, Tampa E, De Flora S.

Carcinogenesis. 2002 Apr;23(4):587-93.

PMID:
11960910
19.

Mechanisms of chromium (VI)-induced apoptosis in anterior pituitary cells.

Quinteros FA, Machiavelli LI, Miler EA, Cabilla JP, Duvilanski BH.

Toxicology. 2008 Jul 30;249(2-3):109-15. doi: 10.1016/j.tox.2008.04.012.

PMID:
18547707
20.

Resistance to apoptosis, increased growth potential, and altered gene expression in cells that survived genotoxic hexavalent chromium [Cr(VI)] exposure.

Pritchard DE, Ceryak S, Ramsey KE, O'Brien TJ, Ha L, Fornsaglio JL, Stephan DA, Patierno SR.

Mol Cell Biochem. 2005 Nov;279(1-2):169-81.

Supplemental Content

Support Center