Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 239

1.

Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering.

Ng CY, Jung MY, Lee J, Oh MK.

Microb Cell Fact. 2012 May 28;11:68. doi: 10.1186/1475-2859-11-68.

2.

Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.

Lian J, Chao R, Zhao H.

Metab Eng. 2014 May;23:92-9. doi: 10.1016/j.ymben.2014.02.003. Epub 2014 Feb 10.

PMID:
24525332
3.

Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing.

Kim S, Hahn JS.

Metab Eng. 2015 Sep;31:94-101. doi: 10.1016/j.ymben.2015.07.006. Epub 2015 Jul 28.

PMID:
26226562
4.

2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.

Nan H, Seo SO, Oh EJ, Seo JH, Cate JH, Jin YS.

Appl Microbiol Biotechnol. 2014 Jun;98(12):5757-64. doi: 10.1007/s00253-014-5683-x. Epub 2014 Apr 18.

PMID:
24743979
5.

Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.

Jung MY, Ng CY, Song H, Lee J, Oh MK.

Appl Microbiol Biotechnol. 2012 Jul;95(2):461-9. doi: 10.1007/s00253-012-3883-9.

PMID:
22297429
6.

Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae.

Kim SJ, Seo SO, Park YC, Jin YS, Seo JH.

J Biotechnol. 2014 Dec 20;192 Pt B:376-82. doi: 10.1016/j.jbiotec.2013.12.017. Epub 2014 Jan 27.

PMID:
24480571
7.
8.

Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae.

Ehsani M, Fernández MR, Biosca JA, Julien A, Dequin S.

Appl Environ Microbiol. 2009 May;75(10):3196-205. doi: 10.1128/AEM.02157-08. Epub 2009 Mar 27.

9.

Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.

Zhang J, Zhao X, Zhang J, Zhao C, Liu J, Tian Y, Yang L.

Prep Biochem Biotechnol. 2017 Sep 14;47(8):761-767. doi: 10.1080/10826068.2017.1320293. Epub 2017 Apr 20.

PMID:
28426331
10.

Metabolic engineering of Klebsiella pneumoniae and in silico investigation for enhanced 2,3-butanediol production.

Rathnasingh C, Park JM, Kim DK, Song H, Chang YK.

Biotechnol Lett. 2016 Jun;38(6):975-82. doi: 10.1007/s10529-016-2062-y. Epub 2016 Feb 17.

PMID:
26886192
11.

Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production.

Kim SJ, Kim JW, Lee YG, Park YC, Seo JH.

Appl Microbiol Biotechnol. 2017 Mar;101(6):2241-2250. doi: 10.1007/s00253-017-8172-1. Epub 2017 Feb 15. Review.

PMID:
28204883
12.

Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.

Papapetridis I, van Dijk M, Dobbe AP, Metz B, Pronk JT, van Maris AJ.

Microb Cell Fact. 2016 Apr 26;15:67. doi: 10.1186/s12934-016-0465-z.

13.

In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production.

Park JM, Song H, Lee HJ, Seung D.

J Ind Microbiol Biotechnol. 2013 Sep;40(9):1057-66. doi: 10.1007/s10295-013-1298-y. Epub 2013 Jun 19.

PMID:
23779220
14.

Production of 2,3-butanediol by engineered Saccharomyces cerevisiae.

Kim SJ, Seo SO, Jin YS, Seo JH.

Bioresour Technol. 2013 Oct;146:274-81. doi: 10.1016/j.biortech.2013.07.081. Epub 2013 Jul 24.

PMID:
23941711
15.

The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase.

Nicholson WL.

Appl Environ Microbiol. 2008 Nov;74(22):6832-8. doi: 10.1128/AEM.00881-08. Epub 2008 Sep 26.

16.

Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism.

Romero S, Merino E, Bolívar F, Gosset G, Martinez A.

Appl Environ Microbiol. 2007 Aug;73(16):5190-8. Epub 2007 Jun 22.

17.

Engineering Corynebacterium glutamicum for the production of 2,3-butanediol.

Radoš D, Carvalho AL, Wieschalka S, Neves AR, Blombach B, Eikmanns BJ, Santos H.

Microb Cell Fact. 2015 Oct 29;14:171. doi: 10.1186/s12934-015-0362-x.

18.

Metabolic engineering of Bacillus subtilis to enhance the production of tetramethylpyrazine.

Meng W, Wang R, Xiao D.

Biotechnol Lett. 2015 Dec;37(12):2475-80. doi: 10.1007/s10529-015-1950-x. Epub 2015 Sep 18.

PMID:
26385762
19.

Enhanced production of 2,3-butanediol by engineered Bacillus subtilis.

Biswas R, Yamaoka M, Nakayama H, Kondo T, Yoshida K, Bisaria VS, Kondo A.

Appl Microbiol Biotechnol. 2012 May;94(3):651-8. doi: 10.1007/s00253-011-3774-5. Epub 2012 Feb 25.

PMID:
22361854
20.

Engineering of Bacillus subtilis for the Production of 2,3-Butanediol from Sugarcane Molasses.

Deshmukh AN, Nipanikar-Gokhale P, Jain R.

Appl Biochem Biotechnol. 2016 May;179(2):321-31. doi: 10.1007/s12010-016-1996-9. Epub 2016 Jan 29.

PMID:
26825987

Supplemental Content

Support Center