Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Staphylococcus aureus FabI: inhibition, substrate recognition, and potential implications for in vivo essentiality.

Schiebel J, Chang A, Lu H, Baxter MV, Tonge PJ, Kisker C.

Structure. 2012 May 9;20(5):802-13. doi: 10.1016/j.str.2012.03.013.

2.

Mechanism and inhibition of saFabI, the enoyl reductase from Staphylococcus aureus.

Xu H, Sullivan TJ, Sekiguchi J, Kirikae T, Ojima I, Stratton CF, Mao W, Rock FL, Alley MR, Johnson F, Walker SG, Tonge PJ.

Biochemistry. 2008 Apr 8;47(14):4228-36. doi: 10.1021/bi800023a. Epub 2008 Mar 13.

3.
4.

An ordered water channel in Staphylococcus aureus FabI: unraveling the mechanism of substrate recognition and reduction.

Schiebel J, Chang A, Merget B, Bommineni GR, Yu W, Spagnuolo LA, Baxter MV, Tareilus M, Tonge PJ, Kisker C, Sotriffer CA.

Biochemistry. 2015 Mar 17;54(10):1943-55. doi: 10.1021/bi5014358. Epub 2015 Mar 3.

5.

Rational optimization of drug-target residence time: insights from inhibitor binding to the Staphylococcus aureus FabI enzyme-product complex.

Chang A, Schiebel J, Yu W, Bommineni GR, Pan P, Baxter MV, Khanna A, Sotriffer CA, Kisker C, Tonge PJ.

Biochemistry. 2013 Jun 18;52(24):4217-28. doi: 10.1021/bi400413c. Epub 2013 Jun 6.

6.

Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase.

Massengo-Tiassé RP, Cronan JE.

J Biol Chem. 2008 Jan 18;283(3):1308-16. Epub 2007 Nov 21.

7.

Resistance to AFN-1252 arises from missense mutations in Staphylococcus aureus enoyl-acyl carrier protein reductase (FabI).

Yao J, Maxwell JB, Rock CO.

J Biol Chem. 2013 Dec 20;288(51):36261-71. doi: 10.1074/jbc.M113.512905. Epub 2013 Nov 4.

8.

The kalimantacin/batumin biosynthesis operon encodes a self-resistance isoform of the FabI bacterial target.

Mattheus W, Masschelein J, Gao LJ, Herdewijn P, Landuyt B, Volckaert G, Lavigne R.

Chem Biol. 2010 Oct 29;17(10):1067-71. doi: 10.1016/j.chembiol.2010.07.015.

9.

Structural insights into the dimer-tetramer transition of FabI from Bacillus anthracis.

Kim HT, Kim S, Na BK, Chung J, Hwang E, Hwang KY.

Biochem Biophys Res Commun. 2017 Nov 4;493(1):28-33. doi: 10.1016/j.bbrc.2017.09.084. Epub 2017 Sep 19.

PMID:
28935372
10.

Spiro-naphthyridinone piperidines as inhibitors of S. aureus and E. coli enoyl-ACP reductase (FabI).

Sampson PB, Picard C, Handerson S, McGrath TE, Domagala M, Leeson A, Romanov V, Awrey DE, Thambipillai D, Bardouniotis E, Kaplan N, Berman JM, Pauls HW.

Bioorg Med Chem Lett. 2009 Sep 15;19(18):5355-8. doi: 10.1016/j.bmcl.2009.07.129. Epub 2009 Aug 6.

PMID:
19682901
11.

Complestatin exerts antibacterial activity by the inhibition of fatty acid synthesis.

Kwon YJ, Kim HJ, Kim WG.

Biol Pharm Bull. 2015;38(5):715-21. doi: 10.1248/bpb.b14-00824.

13.

Meleagrin, a new FabI inhibitor from Penicillium chryosogenum with at least one additional mode of action.

Zheng CJ, Sohn MJ, Lee S, Kim WG.

PLoS One. 2013 Nov 28;8(11):e78922. doi: 10.1371/journal.pone.0078922. eCollection 2013.

14.
15.

Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway.

Lu H, Tonge PJ.

Acc Chem Res. 2008 Jan;41(1):11-20. doi: 10.1021/ar700156e. Review.

PMID:
18193820
16.

Crystal structures and kinetic properties of enoyl-acyl carrier protein reductase I from Candidatus Liberibacter asiaticus.

Jiang L, Gao Z, Li Y, Wang S, Dong Y.

Protein Sci. 2014 Apr;23(4):366-77. doi: 10.1002/pro.2418. Epub 2014 Feb 12.

17.

Verrulactone C with an unprecedented dispiro skeleton, a new inhibitor of Staphylococcus aureus enoyl-ACP reductase, from Penicillium verruculosum F375.

Kim N, Sohn MJ, Koshino H, Kim EH, Kim WG.

Bioorg Med Chem Lett. 2014 Jan 1;24(1):83-6. doi: 10.1016/j.bmcl.2013.11.071. Epub 2013 Dec 4.

PMID:
24332629
18.

Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor.

Schiebel J, Chang A, Shah S, Lu Y, Liu L, Pan P, Hirschbeck MW, Tareilus M, Eltschkner S, Yu W, Cummings JE, Knudson SE, Bommineni GR, Walker SG, Slayden RA, Sotriffer CA, Tonge PJ, Kisker C.

J Biol Chem. 2014 Jun 6;289(23):15987-6005. doi: 10.1074/jbc.M113.532804. Epub 2014 Apr 16.

19.

Type II fatty acid synthesis is essential for the replication of Chlamydia trachomatis.

Yao J, Abdelrahman YM, Robertson RM, Cox JV, Belland RJ, White SW, Rock CO.

J Biol Chem. 2014 Aug 8;289(32):22365-76. doi: 10.1074/jbc.M114.584185. Epub 2014 Jun 23.

20.

Studies of Staphylococcus aureus FabI inhibitors: fragment-based approach based on holographic structure-activity relationship analyses.

Kronenberger T, Asse LR Jr, Wrenger C, Trossini GH, Honorio KM, Maltarollo VG.

Future Med Chem. 2017 Feb;9(2):135-151. doi: 10.4155/fmc-2016-0179. Epub 2017 Jan 27.

PMID:
28128024

Supplemental Content

Support Center