Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 136

1.

New insights into the complexities of shell growth and the strong influence of particle volume in nonblinking "giant" core/shell nanocrystal quantum dots.

Ghosh Y, Mangum BD, Casson JL, Williams DJ, Htoon H, Hollingsworth JA.

J Am Chem Soc. 2012 Jun 13;134(23):9634-43. doi: 10.1021/ja212032q. Epub 2012 May 31.

PMID:
22578279
2.

"Giant" multishell CdSe nanocrystal quantum dots with suppressed blinking.

Chen Y, Vela J, Htoon H, Casson JL, Werder DJ, Bussian DA, Klimov VI, Hollingsworth JA.

J Am Chem Soc. 2008 Apr 16;130(15):5026-7. doi: 10.1021/ja711379k. Epub 2008 Mar 20.

PMID:
18355011
3.

'Giant' multishell CdSe nanocrystal quantum dots with suppressed blinking: Novel fluorescent probes for real-time detection of single-molecule events.

Hollingsworth JA, Vela J, Chen Y, Htoon H, Klimov VI, Casson AR.

Proc SPIE Int Soc Opt Eng. 2009 Mar 3;7189:718904.

4.
5.

Giant nanocrystal quantum dots: stable down-conversion phosphors that exploit a large stokes shift and efficient shell-to-core energy relaxation.

Kundu J, Ghosh Y, Dennis AM, Htoon H, Hollingsworth JA.

Nano Lett. 2012 Jun 13;12(6):3031-7. doi: 10.1021/nl3008659. Epub 2012 May 18.

PMID:
22568894
6.

Effect of shell thickness and composition on blinking suppression and the blinking mechanism in 'giant' CdSe/CdS nanocrystal quantum dots.

Vela J, Htoon H, Chen Y, Park YS, Ghosh Y, Goodwin PM, Werner JH, Wells NP, Casson JL, Hollingsworth JA.

J Biophotonics. 2010 Oct;3(10-11):706-17. doi: 10.1002/jbio.201000058.

7.

Suppressed blinking and auger recombination in near-infrared type-II InP/CdS nanocrystal quantum dots.

Dennis AM, Mangum BD, Piryatinski A, Park YS, Hannah DC, Casson JL, Williams DJ, Schaller RD, Htoon H, Hollingsworth JA.

Nano Lett. 2012 Nov 14;12(11):5545-51. doi: 10.1021/nl302453x. Epub 2012 Oct 2.

8.

Inverting Asymmetric Confinement Potentials in Core/Thick-Shell Nanocrystals.

Paulite M, Acharya KP, Nguyen HM, Hollingsworth JA, Htoon H.

J Phys Chem Lett. 2015 Feb 19;6(4):706-11. doi: 10.1021/jz5027163. Epub 2015 Feb 5.

PMID:
26262490
9.

Lifetime blinking in nonblinking nanocrystal quantum dots.

Galland C, Ghosh Y, Steinbr├╝ck A, Hollingsworth JA, Htoon H, Klimov VI.

Nat Commun. 2012 Jun 19;3:908. doi: 10.1038/ncomms1916.

10.

Air-stable PbSe/PbS and PbSe/PbSexS1-x core-shell nanocrystal quantum dots and their applications.

Lifshitz E, Brumer M, Kigel A, Sashchiuk A, Bashouti M, Sirota M, Galun E, Burshtein Z, Le Quang AQ, Ledoux-Rak I, Zyss J.

J Phys Chem B. 2006 Dec 21;110(50):25356-65.

PMID:
17165982
11.

'Giant' CdSe/CdS core/shell nanocrystal quantum dots as efficient electroluminescent materials: strong influence of shell thickness on light-emitting diode performance.

Pal BN, Ghosh Y, Brovelli S, Laocharoensuk R, Klimov VI, Hollingsworth JA, Htoon H.

Nano Lett. 2012 Jan 11;12(1):331-6. doi: 10.1021/nl203620f. Epub 2011 Dec 22.

PMID:
22148981
12.

Effect of the thiol-thiolate equilibrium on the photophysical properties of aqueous CdSe/ZnS nanocrystal quantum dots.

Jeong S, Achermann M, Nanda J, Ivanov S, Klimov VI, Hollingsworth JA.

J Am Chem Soc. 2005 Jul 27;127(29):10126-7.

PMID:
16028897
13.

Competition between auger recombination and hot-carrier trapping in PL intensity fluctuations of type II nanocrystals.

Mangum BD, Wang F, Dennis AM, Gao Y, Ma X, Hollingsworth JA, Htoon H.

Small. 2014 Jul 23;10(14):2892-901. doi: 10.1002/smll.201302896. Epub 2014 Apr 9.

PMID:
24715631
14.

Observation of biexcitons in nanocrystal solids in the presence of photocharging.

Cihan AF, Hernandez Martinez PL, Kelestemur Y, Mutlugun E, Demir HV.

ACS Nano. 2013 Jun 25;7(6):4799-809. doi: 10.1021/nn305259g. Epub 2013 Jun 3.

PMID:
23713481
15.

Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals.

Mahler B, Lequeux N, Dubertret B.

J Am Chem Soc. 2010 Jan 27;132(3):953-9. doi: 10.1021/ja9034973.

PMID:
20043669
16.

Correlated structural-optical study of single nanocrystals in a gap-bar antenna: effects of plasmonics on excitonic recombination pathways.

Wang F, Karan NS, Nguyen HM, Ghosh Y, Sheehan CJ, Hollingsworth JA, Htoon H.

Nanoscale. 2015 Jun 7;7(21):9387-93. doi: 10.1039/c5nr00772k.

PMID:
25947939
17.

Single-Nanocrystal Photoluminescence Spectroscopy Studies of Plasmon-Multiexciton Interactions at Low Temperature.

Park YS, Ghosh Y, Xu P, Mack NH, Wang HL, Hollingsworth JA, Htoon H.

J Phys Chem Lett. 2013 May 2;4(9):1465-70. doi: 10.1021/jz400479t. Epub 2013 Apr 16.

PMID:
26282300
18.

Elucidation of two giants: challenges to thick-shell synthesis in CdSe/ZnSe and ZnSe/CdS core/shell quantum dots.

Acharya KP, Nguyen HM, Paulite M, Piryatinski A, Zhang J, Casson JL, Xu H, Htoon H, Hollingsworth JA.

J Am Chem Soc. 2015 Mar 25;137(11):3755-8. doi: 10.1021/jacs.5b00313. Epub 2015 Mar 11.

PMID:
25746140
19.

Atomistic Design of CdSe/CdS Core-Shell Quantum Dots with Suppressed Auger Recombination.

Jain A, Voznyy O, Hoogland S, Korkusinski M, Hawrylak P, Sargent EH.

Nano Lett. 2016 Oct 12;16(10):6491-6496. Epub 2016 Sep 29.

PMID:
27668685
20.

Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission.

Pietryga JM, Werder DJ, Williams DJ, Casson JL, Schaller RD, Klimov VI, Hollingsworth JA.

J Am Chem Soc. 2008 Apr 9;130(14):4879-85. doi: 10.1021/ja710437r. Epub 2008 Mar 15.

PMID:
18341344

Supplemental Content

Support Center