Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 87

1.

Asymmetric positive feedback loops reliably control biological responses.

Ratushny AV, Saleem RA, Sitko K, Ramsey SA, Aitchison JD.

Mol Syst Biol. 2012 Apr 24;8:577. doi: 10.1038/msb.2012.10.

2.

Tuning the range and stability of multiple phenotypic states with coupled positive-negative feedback loops.

Avendaño MS, Leidy C, Pedraza JM.

Nat Commun. 2013;4:2605. doi: 10.1038/ncomms3605.

PMID:
24189549
3.

Trade-off between responsiveness and noise suppression in biomolecular system responses to environmental cues.

Ratushny AV, Shmulevich I, Aitchison JD.

PLoS Comput Biol. 2011 Jun;7(6):e1002091. doi: 10.1371/journal.pcbi.1002091. Epub 2011 Jun 30.

4.
5.

A synthetic gene circuit for measuring autoregulatory feedback control.

Schikora-Tamarit MÀ, Toscano-Ochoa C, Domingo Espinós J, Espinar L, Carey LB.

Integr Biol (Camb). 2016 Apr 18;8(4):546-55. doi: 10.1039/c5ib00230c. Epub 2016 Jan 5.

PMID:
26728081
6.

Proximity of intracellular regulatory networks to monotone systems.

Ma'ayan A, Lipshtat A, Iyengar R, Sontag ED.

IET Syst Biol. 2008 May;2(3):103-12. doi: 10.1049/iet-syb:20070036.

7.

Noise can induce bimodality in positive transcriptional feedback loops without bistability.

To TL, Maheshri N.

Science. 2010 Feb 26;327(5969):1142-5. doi: 10.1126/science.1178962.

8.

Systems biology: a switch for sex.

Andrews SS, Arkin AP.

Curr Biol. 2007 Jun 5;17(11):R410-2.

9.

Positive-feedback loops as a flexible biological module.

Ingolia NT, Murray AW.

Curr Biol. 2007 Apr 17;17(8):668-77. Epub 2007 Mar 29.

10.
11.

Long-term model predictive control of gene expression at the population and single-cell levels.

Uhlendorf J, Miermont A, Delaveau T, Charvin G, Fages F, Bottani S, Batt G, Hersen P.

Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14271-6. doi: 10.1073/pnas.1206810109. Epub 2012 Aug 14.

12.

Binding characteristics and regulatory mechanisms of the transcription factors controlling oleate-responsive genes in Saccharomyces cerevisiae.

Karpichev IV, Durand-Heredia JM, Luo Y, Small GM.

J Biol Chem. 2008 Apr 18;283(16):10264-75. doi: 10.1074/jbc.M708215200. Epub 2008 Feb 19.

13.

Systems biology of GAL regulon in Saccharomyces cerevisiae.

Pannala VR, Bhat PJ, Bhartiya S, Venkatesh KV.

Wiley Interdiscip Rev Syst Biol Med. 2010 Jan-Feb;2(1):98-106. doi: 10.1002/wsbm.38. Review.

PMID:
20836013
14.

Control and signal processing by transcriptional interference.

Buetti-Dinh A, Ungricht R, Kelemen JZ, Shetty C, Ratna P, Becskei A.

Mol Syst Biol. 2009;5:300. doi: 10.1038/msb.2009.61. Epub 2009 Aug 18.

15.

The core regulation module of stress-responsive regulatory networks in yeast.

Kim D, Kim MS, Cho KH.

Nucleic Acids Res. 2012 Oct;40(18):8793-802. doi: 10.1093/nar/gks649. Epub 2012 Jul 10.

16.

Simple molecular networks that respond optimally to time-periodic stimulation.

Cournac A, Sepulchre JA.

BMC Syst Biol. 2009 Mar 3;3:29. doi: 10.1186/1752-0509-3-29.

17.

Linearizer gene circuits with negative feedback regulation.

Nevozhay D, Adams RM, Balázsi G.

Methods Mol Biol. 2011;734:81-100. doi: 10.1007/978-1-61779-086-7_5.

PMID:
21468986
18.

Systems biology of energy homeostasis in yeast.

Zhang J, Vemuri G, Nielsen J.

Curr Opin Microbiol. 2010 Jun;13(3):382-8. doi: 10.1016/j.mib.2010.04.004. Epub 2010 May 1. Review.

PMID:
20439164
19.

Transcriptional regulatory networks in Saccharomyces cerevisiae.

Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA.

Science. 2002 Oct 25;298(5594):799-804.

20.

Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism.

Petranovic D, Tyo K, Vemuri GN, Nielsen J.

FEMS Yeast Res. 2010 Dec;10(8):1046-59. doi: 10.1111/j.1567-1364.2010.00689.x. Epub 2010 Oct 26. Review.

Supplemental Content

Support Center