Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 247

1.

Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genic male-sterile line by deep sequencing.

Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C.

Plant Physiol. 2012 Jun;159(2):721-38. doi: 10.1104/pp.112.196048. Epub 2012 Apr 16.

2.

Divergent patterns of endogenous small RNA populations from seed and vegetative tissues of Glycine max.

Zabala G, Campos E, Varala KK, Bloomfield S, Jones SI, Win H, Tuteja JH, Calla B, Clough SJ, Hudson M, Vodkin LO.

BMC Plant Biol. 2012 Oct 2;12:177. doi: 10.1186/1471-2229-12-177.

3.

Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis.

Zhang Y, Zhu X, Chen X, Song C, Zou Z, Wang Y, Wang M, Fang W, Li X.

BMC Plant Biol. 2014 Oct 21;14:271. doi: 10.1186/s12870-014-0271-x.

4.

Genome-wide characterization of JASMONATE-ZIM DOMAIN transcription repressors in wheat (Triticum aestivum L.).

Wang Y, Qiao L, Bai J, Wang P, Duan W, Yuan S, Yuan G, Zhang F, Zhang L, Zhao C.

BMC Genomics. 2017 Feb 13;18(1):152. doi: 10.1186/s12864-017-3582-0.

5.

tasiRNA-ARF pathway moderates floral architecture in Arabidopsis plants subjected to drought stress.

Matsui A, Mizunashi K, Tanaka M, Kaminuma E, Nguyen AH, Nakajima M, Kim JM, Nguyen DV, Toyoda T, Seki M.

Biomed Res Int. 2014;2014:303451. doi: 10.1155/2014/303451. Epub 2014 Aug 26.

6.

Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis.

Kumar D, Dutta S, Singh D, Prabhu KV, Kumar M, Mukhopadhyay K.

Planta. 2017 Jan;245(1):161-182. doi: 10.1007/s00425-016-2600-9. Epub 2016 Oct 3.

PMID:
27699487
7.

Small RNA and Degradome Sequencing Reveal Complex Roles of miRNAs and Their Targets in Developing Wheat Grains.

Li T, Ma L, Geng Y, Hao C, Chen X, Zhang X.

PLoS One. 2015 Oct 1;10(10):e0139658. doi: 10.1371/journal.pone.0139658. eCollection 2015.

8.

Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis.

Yang X, Wang L, Yuan D, Lindsey K, Zhang X.

J Exp Bot. 2013 Apr;64(6):1521-36. doi: 10.1093/jxb/ert013. Epub 2013 Feb 4.

9.

High throughput deep degradome sequencing reveals microRNAs and their targets in response to drought stress in mulberry (Morus alba).

Li R, Chen D, Wang T, Wan Y, Li R, Fang R, Wang Y, Hu F, Zhou H, Li L, Zhao W.

PLoS One. 2017 Feb 24;12(2):e0172883. doi: 10.1371/journal.pone.0172883. eCollection 2017.

10.

Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots.

Xu L, Wang Y, Zhai L, Xu Y, Wang L, Zhu X, Gong Y, Yu R, Limera C, Liu L.

J Exp Bot. 2013 Nov;64(14):4271-87. doi: 10.1093/jxb/ert240. Epub 2013 Sep 7.

11.

Cold stress contributes to aberrant cytokinesis during male meiosis I in a wheat thermosensitive genic male sterile line.

Tang Z, Zhang L, Yang D, Zhao C, Zheng Y.

Plant Cell Environ. 2011 Mar;34(3):389-405. doi: 10.1111/j.1365-3040.2010.02250.x. Epub 2010 Dec 15.

12.

Comprehensive analyses of the annexin gene family in wheat.

Xu L, Tang Y, Gao S, Su S, Hong L, Wang W, Fang Z, Li X, Ma J, Quan W, Sun H, Li X, Wang Y, Liao X, Gao J, Zhang F, Li L, Zhao C.

BMC Genomics. 2016 May 28;17:415. doi: 10.1186/s12864-016-2750-y.

13.

Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.).

Xin M, Wang Y, Yao Y, Xie C, Peng H, Ni Z, Sun Q.

BMC Plant Biol. 2010 Jun 24;10:123. doi: 10.1186/1471-2229-10-123.

14.

Characterization of small RNAs and their target genes in wheat seedlings using sequencing-based approaches.

Li YF, Zheng Y, Jagadeeswaran G, Sunkar R.

Plant Sci. 2013 Apr;203-204:17-24. doi: 10.1016/j.plantsci.2012.12.014. Epub 2013 Jan 3.

PMID:
23415324
15.

Response of microRNAs to cold treatment in the young spikes of common wheat.

Song G, Zhang R, Zhang S, Li Y, Gao J, Han X, Chen M, Wang J, Li W, Li G.

BMC Genomics. 2017 Feb 28;18(1):212. doi: 10.1186/s12864-017-3556-2.

16.

Identification and profiling of novel and conserved microRNAs during the flower opening process in Prunus mume via deep sequencing.

Wang T, Pan H, Wang J, Yang W, Cheng T, Zhang Q.

Mol Genet Genomics. 2014 Apr;289(2):169-83. doi: 10.1007/s00438-013-0800-6. Epub 2013 Dec 17.

PMID:
24343764
17.

Mutation of the RDR1 gene caused genome-wide changes in gene expression, regional variation in small RNA clusters and localized alteration in DNA methylation in rice.

Wang N, Zhang D, Wang Z, Xun H, Ma J, Wang H, Huang W, Liu Y, Lin X, Li N, Ou X, Zhang C, Wang MB, Liu B.

BMC Plant Biol. 2014 Jun 30;14:177. doi: 10.1186/1471-2229-14-177.

18.

Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs.

Cabrera J, Barcala M, García A, Rio-Machín A, Medina C, Jaubert-Possamai S, Favery B, Maizel A, Ruiz-Ferrer V, Fenoll C, Escobar C.

New Phytol. 2016 Mar;209(4):1625-40. doi: 10.1111/nph.13735. Epub 2015 Nov 6.

19.

Apple miRNAs and tasiRNAs with novel regulatory networks.

Xia R, Zhu H, An YQ, Beers EP, Liu Z.

Genome Biol. 2012 Jun 15;13(6):R47. doi: 10.1186/gb-2012-13-6-r47.

20.

Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage.

Jeong DH, Park S, Zhai J, Gurazada SG, De Paoli E, Meyers BC, Green PJ.

Plant Cell. 2011 Dec;23(12):4185-207. doi: 10.1105/tpc.111.089045. Epub 2011 Dec 9.

Supplemental Content

Support Center