Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 74

1.

Exploiting mathematical models to illuminate electrophysiological variability between individuals.

Sarkar AX, Christini DJ, Sobie EA.

J Physiol. 2012 Jun 1;590(11):2555-67. doi: 10.1113/jphysiol.2011.223313. Epub 2012 Apr 10. Review.

2.

Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models?

Johnstone RH, Chang ETY, Bardenet R, de Boer TP, Gavaghan DJ, Pathmanathan P, Clayton RH, Mirams GR.

J Mol Cell Cardiol. 2016 Jul;96:49-62. doi: 10.1016/j.yjmcc.2015.11.018. Epub 2015 Dec 2.

3.

A meta-analysis of cardiac electrophysiology computational models.

Niederer SA, Fink M, Noble D, Smith NP.

Exp Physiol. 2009 May;94(5):486-95. doi: 10.1113/expphysiol.2008.044610. Epub 2009 Jan 12.

4.

Computational cardiac electrophysiology: implementing mathematical models of cardiomyocytes to simulate action potentials of the heart.

Bell MM, Cherry EM.

Methods Mol Biol. 2015;1299:65-74. doi: 10.1007/978-1-4939-2572-8_5.

PMID:
25836575
5.

Rabbit-specific computational modelling of ventricular cell electrophysiology: Using populations of models to explore variability in the response to ischemia.

Gemmell P, Burrage K, Rodríguez B, Quinn TA.

Prog Biophys Mol Biol. 2016 Jul;121(2):169-84. doi: 10.1016/j.pbiomolbio.2016.06.003. Epub 2016 Jun 16.

6.

Regression analysis for constraining free parameters in electrophysiological models of cardiac cells.

Sarkar AX, Sobie EA.

PLoS Comput Biol. 2010 Sep 2;6(9):e1000914. doi: 10.1371/journal.pcbi.1000914.

7.

Uncertainty quantification of fast sodium current steady-state inactivation for multi-scale models of cardiac electrophysiology.

Pathmanathan P, Shotwell MS, Gavaghan DJ, Cordeiro JM, Gray RA.

Prog Biophys Mol Biol. 2015 Jan;117(1):4-18. doi: 10.1016/j.pbiomolbio.2015.01.008. Epub 2015 Feb 7. Review.

8.

Variability in cardiac electrophysiology: Using experimentally-calibrated populations of models to move beyond the single virtual physiological human paradigm.

Muszkiewicz A, Britton OJ, Gemmell P, Passini E, Sánchez C, Zhou X, Carusi A, Quinn TA, Burrage K, Bueno-Orovio A, Rodriguez B.

Prog Biophys Mol Biol. 2016 Jan;120(1-3):115-27. doi: 10.1016/j.pbiomolbio.2015.12.002. Epub 2015 Dec 14.

9.

Stiffness analysis of cardiac electrophysiological models.

Spiteri RJ, Dean RC.

Ann Biomed Eng. 2010 Dec;38(12):3592-604. doi: 10.1007/s10439-010-0100-9. Epub 2010 Jun 26. Erratum in: Ann Biomed Eng. 2012 Jul;40(7):1622-5.

PMID:
20582476
10.

Improving cardiomyocyte model fidelity and utility via dynamic electrophysiology protocols and optimization algorithms.

Krogh-Madsen T, Sobie EA, Christini DJ.

J Physiol. 2016 May 1;594(9):2525-36. doi: 10.1113/JP270618. Epub 2016 Feb 4. Review.

11.

Computational biology in the study of cardiac ion channels and cell electrophysiology.

Rudy Y, Silva JR.

Q Rev Biophys. 2006 Feb;39(1):57-116. Epub 2006 Jul 19. Review.

12.

On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity.

Spiteri RJ, Dean RC.

IEEE Trans Biomed Eng. 2008 May;55(5):1488-95. doi: 10.1109/TBME.2007.914677.

PMID:
18440894
13.

Modelling the effect of gap junctions on tissue-level cardiac electrophysiology.

Bruce D, Pathmanathan P, Whiteley JP.

Bull Math Biol. 2014 Feb;76(2):431-54. doi: 10.1007/s11538-013-9927-1. Epub 2013 Dec 13.

PMID:
24338526
14.

Parameter sensitivity analysis in electrophysiological models using multivariable regression.

Sobie EA.

Biophys J. 2009 Feb 18;96(4):1264-74. doi: 10.1016/j.bpj.2008.10.056.

15.

Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling.

Koivumäki JT, Korhonen T, Takalo J, Weckström M, Tavi P.

BMC Physiol. 2009 Aug 31;9:16. doi: 10.1186/1472-6793-9-16.

16.

Sampling methods for exploring between-subject variability in cardiac electrophysiology experiments.

Drovandi CC, Cusimano N, Psaltis S, Lawson BA, Pettitt AN, Burrage P, Burrage K.

J R Soc Interface. 2016 Aug;13(121). pii: 20160214. doi: 10.1098/rsif.2016.0214.

17.

Models of cardiac tissue electrophysiology: progress, challenges and open questions.

Clayton RH, Bernus O, Cherry EM, Dierckx H, Fenton FH, Mirabella L, Panfilov AV, Sachse FB, Seemann G, Zhang H.

Prog Biophys Mol Biol. 2011 Jan;104(1-3):22-48. doi: 10.1016/j.pbiomolbio.2010.05.008. Epub 2010 May 27. Review.

PMID:
20553746
18.

Electrophysiological modeling of fibroblasts and their interaction with myocytes.

Sachse FB, Moreno AP, Abildskov JA.

Ann Biomed Eng. 2008 Jan;36(1):41-56. Epub 2007 Nov 13.

PMID:
17999190
19.

Quantitative Decomposition of Dynamics of Mathematical Cell Models: Method and Application to Ventricular Myocyte Models.

Shimayoshi T, Cha CY, Amano A.

PLoS One. 2015 Jun 19;10(6):e0124970. doi: 10.1371/journal.pone.0124970. eCollection 2015.

20.

Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species.

O'Hara T, Rudy Y.

Am J Physiol Heart Circ Physiol. 2012 Mar 1;302(5):H1023-30. doi: 10.1152/ajpheart.00785.2011. Epub 2011 Dec 9.

Supplemental Content

Support Center