Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 103

1.

Mutualistic interactions between vitamin B12 -dependent algae and heterotrophic bacteria exhibit regulation.

Kazamia E, Czesnick H, Nguyen TT, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG.

Environ Microbiol. 2012 Jun;14(6):1466-76. doi: 10.1111/j.1462-2920.2012.02733.x. Epub 2012 Mar 29.

PMID:
22463064
2.

Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria.

Xie B, Bishop S, Stessman D, Wright D, Spalding MH, Halverson LJ.

ISME J. 2013 Aug;7(8):1544-55. doi: 10.1038/ismej.2013.43. Epub 2013 Mar 14.

3.

Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes.

Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG.

Mol Biol Evol. 2011 Oct;28(10):2921-33. doi: 10.1093/molbev/msr124. Epub 2011 May 6.

PMID:
21551270
4.

Algae acquire vitamin B12 through a symbiotic relationship with bacteria.

Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG.

Nature. 2005 Nov 3;438(7064):90-3.

PMID:
16267554
5.

Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal-bacterial cocultures.

Grant MA, Kazamia E, Cicuta P, Smith AG.

ISME J. 2014 Jul;8(7):1418-27. doi: 10.1038/ismej.2014.9. Epub 2014 Feb 13.

6.

Unraveling vitamin B12-responsive gene regulation in algae.

Helliwell KE, Scaife MA, Sasso S, Araujo AP, Purton S, Smith AG.

Plant Physiol. 2014 May;165(1):388-97. doi: 10.1104/pp.113.234369. Epub 2014 Mar 13.

7.

Complementation of Cobalamin Auxotrophy in Synechococcus sp. Strain PCC 7002 and Validation of a Putative Cobalamin Riboswitch In Vivo.

Pérez AA, Liu Z, Rodionov DA, Li Z, Bryant DA.

J Bacteriol. 2016 Sep 9;198(19):2743-52. doi: 10.1128/JB.00475-16. Print 2016 Oct 1.

8.

Fundamental shift in vitamin B12 eco-physiology of a model alga demonstrated by experimental evolution.

Helliwell KE, Collins S, Kazamia E, Purton S, Wheeler GL, Smith AG.

ISME J. 2015 Jun;9(6):1446-55. doi: 10.1038/ismej.2014.230. Epub 2014 Dec 19.

9.

Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host.

Taga ME, Walker GC.

Mol Plant Microbe Interact. 2010 Dec;23(12):1643-54. doi: 10.1094/MPMI-07-10-0151.

10.

Vitamin B12 metabolism in a photosynthesizing green alga, Chlamydomonas reinhardtii.

Watanabe F, Nakano Y, Tamura Y, Yamanaka H.

Biochim Biophys Acta. 1991 Sep 2;1075(1):36-41.

PMID:
1892864
11.

Occurrence of pseudovitamin B12 and its possible function as the cofactor of cobalamin-dependent methionine synthase in a cyanobacterium Synechocystis sp. PCC6803.

Tanioka Y, Yabuta Y, Yamaji R, Shigeoka S, Nakano Y, Watanabe F, Inui H.

J Nutr Sci Vitaminol (Tokyo). 2009 Dec;55(6):518-21.

13.

Metabolic adaptation of Ralstonia solanacearum during plant infection: a methionine biosynthesis case study.

Plener L, Boistard P, González A, Boucher C, Genin S.

PLoS One. 2012;7(5):e36877. doi: 10.1371/journal.pone.0036877. Epub 2012 May 16.

14.
15.

A synthetic module for the metH gene permits facile mutagenesis of the cobalamin-binding region of Escherichia coli methionine synthase: initial characterization of seven mutant proteins.

Amaratunga M, Fluhr K, Jarrett JT, Drennan CL, Ludwig ML, Matthews RG, Scholten JD.

Biochemistry. 1996 Feb 20;35(7):2453-63.

PMID:
8652589
16.

Uptake and physiological function of vitamin B12 in a photosynthetic unicellular coccolithophorid alga, Pleurochrysis carterae.

Miyamoto E, Watanabe F, Takenaka H, Nakano Y.

Biosci Biotechnol Biochem. 2002 Jan;66(1):195-8.

18.

Changes in cobalamin metabolism are associated with the altered methionine auxotrophy of highly growth autonomous human melanoma cells.

Liteplo RG, Hipwell SE, Rosenblatt DS, Sillaots S, Lue-Shing H.

J Cell Physiol. 1991 Nov;149(2):332-8.

PMID:
1748723
20.

Supplemental Content

Support Center