Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines.

Vazquez-Mena O, Medina-Martinez I, Juárez-Torres E, Barrón V, Espinosa A, Villegas-Sepulveda N, Gómez-Laguna L, Nieto-Martínez K, Orozco L, Roman-Basaure E, Muñoz Cortez S, Borges Ibañez M, Venegas-Vega C, Guardado-Estrada M, Rangel-López A, Kofman S, Berumen J.

PLoS One. 2012;7(3):e32667. doi: 10.1371/journal.pone.0032667. Epub 2012 Mar 7.

2.

Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer.

Kloth JN, Oosting J, van Wezel T, Szuhai K, Knijnenburg J, Gorter A, Kenter GG, Fleuren GJ, Jordanova ES.

BMC Genomics. 2007 Feb 20;8:53.

3.

Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer.

Tsukamoto Y, Uchida T, Karnan S, Noguchi T, Nguyen LT, Tanigawa M, Takeuchi I, Matsuura K, Hijiya N, Nakada C, Kishida T, Kawahara K, Ito H, Murakami K, Fujioka T, Seto M, Moriyama M.

J Pathol. 2008 Dec;216(4):471-82. doi: 10.1002/path.2424.

PMID:
18798223
4.

Genome-wide screening of DNA copy number alterations in cervical carcinoma patients with CGH+SNP microarrays and HPV-FISH.

Kuglik P, Smetana J, Vallova V, Moukova L, Kasikova K, Cvanova M, Brozova L.

Int J Clin Exp Pathol. 2014 Jul 15;7(8):5071-82. eCollection 2014.

5.

Frequent gain of copy number on the long arm of chromosome 3 in human cervical adenocarcinoma.

Yang YC, Shyong WY, Chang MS, Chen YJ, Lin CH, Huang ZD, Wang, Hsu MT, Chen ML.

Cancer Genet Cytogenet. 2001 Nov;131(1):48-53.

PMID:
11734318
6.

Impact of gene dosage on gene expression, biological processes and survival in cervical cancer: a genome-wide follow-up study.

Medina-Martinez I, Barrón V, Roman-Bassaure E, Juárez-Torres E, Guardado-Estrada M, Espinosa AM, Bermudez M, Fernández F, Venegas-Vega C, Orozco L, Zenteno E, Kofman S, Berumen J.

PLoS One. 2014 May 30;9(5):e97842. doi: 10.1371/journal.pone.0097842. eCollection 2014.

7.

Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.

Forozan F, Mahlamäki EH, Monni O, Chen Y, Veldman R, Jiang Y, Gooden GC, Ethier SP, Kallioniemi A, Kallioniemi OP.

Cancer Res. 2000 Aug 15;60(16):4519-25.

8.

Identification of overexpressed genes in frequently gained/amplified chromosome regions in multiple myeloma.

Largo C, Alvarez S, Saez B, Blesa D, Martin-Subero JI, González-García I, Brieva JA, Dopazo J, Siebert R, Calasanz MJ, Cigudosa JC.

Haematologica. 2006 Feb;91(2):184-91.

9.

Whole genome tiling path array CGH analysis of segmental copy number alterations in cervical cancer cell lines.

Lockwood WW, Coe BP, Williams AC, MacAulay C, Lam WL.

Int J Cancer. 2007 Jan 15;120(2):436-43.

10.

Integrative genomics analysis of chromosome 5p gain in cervical cancer reveals target over-expressed genes, including Drosha.

Scotto L, Narayan G, Nandula SV, Subramaniyam S, Kaufmann AM, Wright JD, Pothuri B, Mansukhani M, Schneider A, Arias-Pulido H, Murty VV.

Mol Cancer. 2008 Jun 17;7:58. doi: 10.1186/1476-4598-7-58.

11.

Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression.

Scotto L, Narayan G, Nandula SV, Arias-Pulido H, Subramaniyam S, Schneider A, Kaufmann AM, Wright JD, Pothuri B, Mansukhani M, Murty VV.

Genes Chromosomes Cancer. 2008 Sep;47(9):755-65. doi: 10.1002/gcc.20577.

PMID:
18506748
12.

Genomic alterations in cervical carcinoma: losses of chromosome heterozygosity and human papilloma virus tumor status.

Mullokandov MR, Kholodilov NG, Atkin NB, Burk RD, Johnson AB, Klinger HP.

Cancer Res. 1996 Jan 1;56(1):197-205.

13.

Genome-wide analysis of oral squamous cell carcinomas revealed over expression of ISG15, Nestin and WNT11.

Vincent-Chong VK, Ismail SM, Rahman ZA, Sharifah NA, Anwar A, Pradeep PJ, Ramanathan A, Karen-Ng LP, Kallarakkal TG, Mustafa WM, Abraham MT, Tay KK, Zain RB.

Oral Dis. 2012 Jul;18(5):469-76. doi: 10.1111/j.1601-0825.2011.01894.x. Epub 2012 Jan 18.

PMID:
22251088
14.

Genome-wide profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization.

Sparano A, Quesnelle KM, Kumar MS, Wang Y, Sylvester AJ, Feldman M, Sewell DA, Weinstein GS, Brose MS.

Laryngoscope. 2006 May;116(5):735-41.

PMID:
16652080
15.

Integrated analysis of expression and genome alteration reveals putative amplified target genes in esophageal cancer.

Sugimoto T, Arai M, Shimada H, Hata A, Seki N.

Oncol Rep. 2007 Aug;18(2):465-72.

PMID:
17611672
16.

Increased gene copy numbers at chromosome 20q are frequent in both squamous cell carcinomas and adenocarcinomas of the cervix.

Wilting SM, Snijders PJ, Meijer GA, Ylstra B, van den Ijssel PR, Snijders AM, Albertson DG, Coffa J, Schouten JP, van de Wiel MA, Meijer CJ, Steenbergen RD.

J Pathol. 2006 Jun;209(2):220-30.

PMID:
16538612
17.
18.

Genomic aberrations in carcinomas of the uterine corpus.

Micci F, Teixeira MR, Haugom L, Kristensen G, Abeler VM, Heim S.

Genes Chromosomes Cancer. 2004 Jul;40(3):229-46.

PMID:
15139002
19.

High-resolution genomic and expression analyses of copy number alterations in HER2-amplified breast cancer.

Staaf J, Jönsson G, Ringnér M, Vallon-Christersson J, Grabau D, Arason A, Gunnarsson H, Agnarsson BA, Malmström PO, Johannsson OT, Loman N, Barkardottir RB, Borg A.

Breast Cancer Res. 2010;12(3):R25. doi: 10.1186/bcr2568. Epub 2010 May 6.

20.

SOX2 identified as a target gene for the amplification at 3q26 that is frequently detected in esophageal squamous cell carcinoma.

Gen Y, Yasui K, Zen Y, Zen K, Dohi O, Endo M, Tsuji K, Wakabayashi N, Itoh Y, Naito Y, Taniwaki M, Nakanuma Y, Okanoue T, Yoshikawa T.

Cancer Genet Cytogenet. 2010 Oct 15;202(2):82-93. doi: 10.1016/j.cancergencyto.2010.01.023.

PMID:
20875870

Supplemental Content

Support Center