Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

A systems approach identifies HIPK2 as a key regulator of kidney fibrosis.

Jin Y, Ratnam K, Chuang PY, Fan Y, Zhong Y, Dai Y, Mazloom AR, Chen EY, D'Agati V, Xiong H, Ross MJ, Chen N, Ma'ayan A, He JC.

Nat Med. 2012 Mar 11;18(4):580-8. doi: 10.1038/nm.2685.

2.

A Novel Inhibitor of Homeodomain Interacting Protein Kinase 2 Mitigates Kidney Fibrosis through Inhibition of the TGF-β1/Smad3 Pathway.

Liu R, Das B, Xiao W, Li Z, Li H, Lee K, He JC.

J Am Soc Nephrol. 2017 Jul;28(7):2133-2143. doi: 10.1681/ASN.2016080841. Epub 2017 Feb 20.

PMID:
28220029
3.

miR-141 regulates TGF-β1-induced epithelial-mesenchymal transition through repression of HIPK2 expression in renal tubular epithelial cells.

Huang Y, Tong J, He F, Yu X, Fan L, Hu J, Tan J, Chen Z.

Int J Mol Med. 2015 Feb;35(2):311-8. doi: 10.3892/ijmm.2014.2008. Epub 2014 Nov 24.

4.

Diverse roles of TGF-β receptor II in renal fibrosis and inflammation in vivo and in vitro.

Meng XM, Huang XR, Xiao J, Chen HY, Zhong X, Chung AC, Lan HY.

J Pathol. 2012 Jun;227(2):175-88. doi: 10.1002/path.3976. Epub 2012 Feb 22.

PMID:
22190171
5.

Role of HIPK2 in kidney fibrosis.

Fan Y, Wang N, Chuang P, He JC.

Kidney Int Suppl (2011). 2014 Nov;4(1):97-101. Review.

6.

Redox control of p53 in the transcriptional regulation of TGF-β1 target genes through SMAD cooperativity.

Overstreet JM, Samarakoon R, Meldrum KK, Higgins PJ.

Cell Signal. 2014 Jul;26(7):1427-36. doi: 10.1016/j.cellsig.2014.02.017. Epub 2014 Mar 5.

7.

The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway.

Li R, Chung AC, Dong Y, Yang W, Zhong X, Lan HY.

Kidney Int. 2013 Dec;84(6):1129-44. doi: 10.1038/ki.2013.272. Epub 2013 Jul 17.

8.

Transforming growth factor-{beta}1 induces Smad3-dependent {beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis.

Yeh YC, Wei WC, Wang YK, Lin SC, Sung JM, Tang MJ.

Am J Pathol. 2010 Oct;177(4):1743-54. doi: 10.2353/ajpath.2010.091183. Epub 2010 Aug 13.

9.

Knockdown of HIPK2 attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-β1.

He P, Yu ZJ, Sun CY, Jiao SJ, Jiang HQ.

Biomed Pharmacother. 2017 Jan;85:575-581. doi: 10.1016/j.biopha.2016.11.066. Epub 2016 Nov 24.

PMID:
27890429
10.

Cell phenotype-specific down-regulation of Smad3 involves decreased gene activation as well as protein degradation.

Poncelet AC, Schnaper HW, Tan R, Liu Y, Runyan CE.

J Biol Chem. 2007 May 25;282(21):15534-40. Epub 2007 Mar 30.

11.

Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR.

Winter M, Sombroek D, Dauth I, Moehlenbrink J, Scheuermann K, Crone J, Hofmann TG.

Nat Cell Biol. 2008 Jul;10(7):812-24. doi: 10.1038/ncb1743. Epub 2008 Jun 8.

PMID:
18536714
12.

Kindlin-2 mediates activation of TGF-β/Smad signaling and renal fibrosis.

Wei X, Xia Y, Li F, Tang Y, Nie J, Liu Y, Zhou Z, Zhang H, Hou FF.

J Am Soc Nephrol. 2013 Sep;24(9):1387-98. doi: 10.1681/ASN.2012101041. Epub 2013 May 30.

13.

The differential expression of TGF-β1, ILK and wnt signaling inducing epithelial to mesenchymal transition in human renal fibrogenesis: an immunohistochemical study.

Kim MK, Maeng YI, Sung WJ, Oh HK, Park JB, Yoon GS, Cho CH, Park KK.

Int J Clin Exp Pathol. 2013 Aug 15;6(9):1747-58. eCollection 2013.

14.

Zyxin is a critical regulator of the apoptotic HIPK2-p53 signaling axis.

Crone J, Glas C, Schultheiss K, Moehlenbrink J, Krieghoff-Henning E, Hofmann TG.

Cancer Res. 2011 Mar 15;71(6):2350-9. doi: 10.1158/0008-5472.CAN-10-3486. Epub 2011 Jan 19.

15.

Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b.

Wang B, Jha JC, Hagiwara S, McClelland AD, Jandeleit-Dahm K, Thomas MC, Cooper ME, Kantharidis P.

Kidney Int. 2014 Feb;85(2):352-61. doi: 10.1038/ki.2013.372. Epub 2013 Oct 2.

16.

How cells switch HIPK2 on and off.

Sombroek D, Hofmann TG.

Cell Death Differ. 2009 Feb;16(2):187-94. doi: 10.1038/cdd.2008.154. Epub 2008 Oct 31. Review.

17.

Stabilization of HIPK2 by escape from proteasomal degradation mediated by the E3 ubiquitin ligase Siah1.

Kim SY, Choi DW, Kim EA, Choi CY.

Cancer Lett. 2009 Jul 8;279(2):177-84. doi: 10.1016/j.canlet.2009.01.036. Epub 2009 Feb 27.

PMID:
19250734
18.

Activation of the interleukin-4/signal transducer and activator of transcription 6 signaling pathway and homeodomain-interacting protein kinase 2 production by tonsillar mononuclear cells in IgA nephropathy.

He L, Peng Y, Liu H, Yin W, Chen X, Peng X, Shao J, Liu Y, Liu F.

Am J Nephrol. 2013;38(4):321-32. doi: 10.1159/000355393. Epub 2013 Oct 4.

PMID:
24107646
19.

MDM4/HIPK2/p53 cytoplasmic assembly uncovers coordinated repression of molecules with anti-apoptotic activity during early DNA damage response.

Mancini F, Pieroni L, Monteleone V, Lucà R, Fici L, Luca E, Urbani A, Xiong S, Soddu S, Masetti R, Lozano G, Pontecorvi A, Moretti F.

Oncogene. 2016 Jan 14;35(2):228-40. doi: 10.1038/onc.2015.76. Epub 2015 May 11.

20.

Supplemental Content

Support Center