Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 169

1.

Interruption of glycosphingolipid synthesis enhances osteoarthritis development in mice.

Seito N, Yamashita T, Tsukuda Y, Matsui Y, Urita A, Onodera T, Mizutani T, Haga H, Fujitani N, Shinohara Y, Minami A, Iwasaki N.

Arthritis Rheum. 2012 Aug;64(8):2579-88. doi: 10.1002/art.34463.

2.

Depletion of gangliosides enhances cartilage degradation in mice.

Sasazawa F, Onodera T, Yamashita T, Seito N, Tsukuda Y, Fujitani N, Shinohara Y, Iwasaki N.

Osteoarthritis Cartilage. 2014 Feb;22(2):313-22. doi: 10.1016/j.joca.2013.11.015. Epub 2013 Dec 12.

3.

Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in the pathogenesis of osteoarthritis.

Xu L, Peng H, Glasson S, Lee PL, Hu K, Ijiri K, Olsen BR, Goldring MB, Li Y.

Arthritis Rheum. 2007 Aug;56(8):2663-73.

4.

Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability.

Kamekura S, Kawasaki Y, Hoshi K, Shimoaka T, Chikuda H, Maruyama Z, Komori T, Sato S, Takeda S, Karsenty G, Nakamura K, Chung UI, Kawaguchi H.

Arthritis Rheum. 2006 Aug;54(8):2462-70.

5.

Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein.

Uehara Y, Hirose J, Yamabe S, Okamoto N, Okada T, Oyadomari S, Mizuta H.

Osteoarthritis Cartilage. 2014 Jul;22(7):1007-17. doi: 10.1016/j.joca.2014.04.025. Epub 2014 May 2.

6.

Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis.

Zhang Y, Vasheghani F, Li YH, Blati M, Simeone K, Fahmi H, Lussier B, Roughley P, Lagares D, Pelletier JP, Martel-Pelletier J, Kapoor M.

Ann Rheum Dis. 2015 Jul;74(7):1432-40. doi: 10.1136/annrheumdis-2013-204599. Epub 2014 Mar 20.

PMID:
24651621
7.

Melanocortin 1 receptor-signaling deficiency results in an articular cartilage phenotype and accelerates pathogenesis of surgically induced murine osteoarthritis.

Lorenz J, Seebach E, Hackmayer G, Greth C, Bauer RJ, Kleinschmidt K, Bettenworth D, Böhm M, Grifka J, Grässel S.

PLoS One. 2014 Sep 5;9(9):e105858. doi: 10.1371/journal.pone.0105858. eCollection 2014.

8.

Interleukin-6 plays an essential role in hypoxia-inducible factor 2α-induced experimental osteoarthritic cartilage destruction in mice.

Ryu JH, Yang S, Shin Y, Rhee J, Chun CH, Chun JS.

Arthritis Rheum. 2011 Sep;63(9):2732-43. doi: 10.1002/art.30451.

9.

Effects of mesenchymal stem cells on interleukin-1β-treated chondrocytes and cartilage in a rat osteoarthritic model.

Tang J, Cui W, Song F, Zhai C, Hu H, Zuo Q, Fan W.

Mol Med Rep. 2015 Aug;12(2):1753-60. doi: 10.3892/mmr.2015.3645. Epub 2015 Apr 20.

10.

Dkk-1 expression in chondrocytes inhibits experimental osteoarthritic cartilage destruction in mice.

Oh H, Chun CH, Chun JS.

Arthritis Rheum. 2012 Aug;64(8):2568-78. doi: 10.1002/art.34481.

11.

A 3D cartilage - inflammatory cell culture system for the modeling of human osteoarthritis.

Sun L, Wang X, Kaplan DL.

Biomaterials. 2011 Aug;32(24):5581-9. doi: 10.1016/j.biomaterials.2011.04.028. Epub 2011 May 12.

12.

Deletion of the transforming growth factor β receptor type II gene in articular chondrocytes leads to a progressive osteoarthritis-like phenotype in mice.

Shen J, Li J, Wang B, Jin H, Wang M, Zhang Y, Yang Y, Im HJ, O'Keefe R, Chen D.

Arthritis Rheum. 2013 Dec;65(12):3107-19. doi: 10.1002/art.38122.

13.

Activation of cartilage matrix metalloproteinases by activated protein C.

Jackson MT, Smith MM, Smith SM, Jackson CJ, Xue M, Little CB.

Arthritis Rheum. 2009 Mar;60(3):780-91. doi: 10.1002/art.24303.

14.

Activation of matrix metalloproteinases 2, 9, and 13 by activated protein C in human osteoarthritic cartilage chondrocytes.

Jackson MT, Moradi B, Smith MM, Jackson CJ, Little CB.

Arthritis Rheumatol. 2014 Jun;66(6):1525-36. doi: 10.1002/art.38401.

15.

Increased chondrocyte sclerostin may protect against cartilage degradation in osteoarthritis.

Chan BY, Fuller ES, Russell AK, Smith SM, Smith MM, Jackson MT, Cake MA, Read RA, Bateman JF, Sambrook PN, Little CB.

Osteoarthritis Cartilage. 2011 Jul;19(7):874-85. doi: 10.1016/j.joca.2011.04.014. Epub 2011 May 12.

17.

Identification of soluble 14-3-3∊ as a novel subchondral bone mediator involved in cartilage degradation in osteoarthritis.

Priam S, Bougault C, Houard X, Gosset M, Salvat C, Berenbaum F, Jacques C.

Arthritis Rheum. 2013 Jul;65(7):1831-42. doi: 10.1002/art.37951.

18.

Alterations of high-mannose type N-glycosylation in human and mouse osteoarthritis cartilage.

Urita A, Matsuhashi T, Onodera T, Nakagawa H, Hato M, Amano M, Seito N, Minami A, Nishimura S, Iwasaki N.

Arthritis Rheum. 2011 Nov;63(11):3428-38. doi: 10.1002/art.30584.

19.

Effects of FGF-2 and FGF receptor antagonists on MMP enzymes, aggrecan, and type II collagen in primary human OA chondrocytes.

Nummenmaa E, Hämäläinen M, Moilanen T, Vuolteenaho K, Moilanen E.

Scand J Rheumatol. 2015;44(4):321-30. doi: 10.3109/03009742.2014.1000372. Epub 2015 Mar 6.

PMID:
25743336
20.

Supplemental Content

Support Center