Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 142

1.

Irrigation differentially impacts populations of indigenous antibiotic-producing pseudomonas spp. in the rhizosphere of wheat.

Mavrodi OV, Mavrodi DV, Parejko JA, Thomashow LS, Weller DM.

Appl Environ Microbiol. 2012 May;78(9):3214-20. doi: 10.1128/AEM.07968-11. Epub 2012 Mar 2.

2.

Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals.

Mavrodi DV, Mavrodi OV, Parejko JA, Bonsall RF, Kwak YS, Paulitz TC, Thomashow LS, Weller DM.

Appl Environ Microbiol. 2012 Feb;78(3):804-12. doi: 10.1128/AEM.06784-11. Epub 2011 Dec 2.

3.

Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat.

Bakker PA, Glandorf DC, Viebahn M, Ouwens TW, Smit E, Leeflang P, Wernars K, Thomashow LS, Thomas-Oates JE, van Loon LC.

Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):617-24.

PMID:
12448757
4.

Population structure and diversity of phenazine-1-carboxylic acid producing fluorescent Pseudomonas spp. from dryland cereal fields of central Washington State (USA).

Parejko JA, Mavrodi DV, Mavrodi OV, Weller DM, Thomashow LS.

Microb Ecol. 2012 Jul;64(1):226-41. doi: 10.1007/s00248-012-0015-0. Epub 2012 Mar 2.

PMID:
22383119
5.

Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp.

Bergsma-Vlami M, Prins ME, Raaijmakers JM.

FEMS Microbiol Ecol. 2005 Mar 1;52(1):59-69. Epub 2004 Nov 18.

6.

Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations.

Mazzola M, Funnell DL, Raaijmakers JM.

Microb Ecol. 2004 Oct;48(3):338-48. Epub 2004 Aug 24.

PMID:
15692854
7.

Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat.

Glandorf DC, Verheggen P, Jansen T, Jorritsma JW, Smit E, Leeflang P, Wernars K, Thomashow LS, Laureijs E, Thomas-Oates JE, Bakker PA, van Loon LC.

Appl Environ Microbiol. 2001 Aug;67(8):3371-8.

9.

Changes in populations of rhizosphere bacteria associated with take-all disease of wheat.

McSpadden Gardener BB, Weller DM.

Appl Environ Microbiol. 2001 Oct;67(10):4414-25.

10.

Biological control of take-all by fluorescent Pseudomonas spp. from Chinese wheat fields.

Yang MM, Mavrodi DV, Mavrodi OV, Bonsall RF, Parejko JA, Paulitz TC, Thomashow LS, Yang HT, Weller DM, Guo JH.

Phytopathology. 2011 Dec;101(12):1481-91. doi: 10.1094/PHYTO-04-11-0096.

11.

Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots.

Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Blouin Bankhead S, Allende Molar R, Bonsall RF, Mavrodi DV, Thomashow LS.

Plant Biol (Stuttg). 2007 Jan;9(1):4-20. Epub 2006 Oct 23. Review.

PMID:
17058178
12.

Assessment of genotypic diversity of antibiotic-producing pseudomonas species in the rhizosphere by denaturing gradient gel electrophoresis.

Bergsma-Vlami M, Prins ME, Staats M, Raaijmakers JM.

Appl Environ Microbiol. 2005 Feb;71(2):993-1003.

13.

Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat.

Viebahn M, Glandorf DC, Ouwens TW, Smit E, Leeflang P, Wernars K, Thomashow LS, van Loon LC, Bakker PA.

Appl Environ Microbiol. 2003 Jun;69(6):3110-8.

14.

Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats.

Mazzola M, Cook RJ, Thomashow LS, Weller DM, Pierson LS 3rd.

Appl Environ Microbiol. 1992 Aug;58(8):2616-24.

15.

Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture.

Landa BB, Mavrodi OV, Schroeder KL, Allende-Molar R, Weller DM.

FEMS Microbiol Ecol. 2006 Mar;55(3):351-68.

16.

Ascomycete communities in the rhizosphere of field-grown wheat are not affected by introductions of genetically modified Pseudomonas putida WCS358r.

Viebahn M, Doornbos R, Wernars K, van Loon LC, Smit E, Bakker PA.

Environ Microbiol. 2005 Nov;7(11):1775-85.

PMID:
16232292
17.

Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin.

Ramette A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer JM, Défago G, Sutra L, Moënne-Loccoz Y.

Syst Appl Microbiol. 2011 May;34(3):180-8. doi: 10.1016/j.syapm.2010.10.005. Epub 2011 Mar 9.

PMID:
21392918
18.

Quantification of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains in the plant rhizosphere by real-time PCR.

Mavrodi OV, Mavrodi DV, Thomashow LS, Weller DM.

Appl Environ Microbiol. 2007 Sep;73(17):5531-8. Epub 2007 Jul 13.

19.

Interplay between wheat cultivars, biocontrol pseudomonads, and soil.

Meyer JB, Lutz MP, Frapolli M, Péchy-Tarr M, Rochat L, Keel C, Défago G, Maurhofer M.

Appl Environ Microbiol. 2010 Sep;76(18):6196-204. doi: 10.1128/AEM.00752-10. Epub 2010 Jul 30.

20.

Effect of Population Density of Pseudomonas fluorescens on Production of 2,4-Diacetylphloroglucinol in the Rhizosphere of Wheat.

Raaijmakers JM, Bonsall RF, Weller DM.

Phytopathology. 1999 Jun;89(6):470-5. doi: 10.1094/PHYTO.1999.89.6.470.

Items per page

Supplemental Content

Write to the Help Desk