Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

A naturally thermolabile activity compromises genetic analysis of telomere function in Saccharomyces cerevisiae.

Paschini M, Toro TB, Lubin JW, Braunstein-Ballew B, Morris DK, Lundblad V.

Genetics. 2012 May;191(1):79-93. doi: 10.1534/genetics.111.137869. Epub 2012 Feb 29.

2.

TEN1 is essential for CDC13-mediated telomere capping.

Xu L, Petreaca RC, Gasparyan HJ, Vu S, Nugent CI.

Genetics. 2009 Nov;183(3):793-810. doi: 10.1534/genetics.109.108894. Epub 2009 Sep 14.

3.
4.
5.

Survival and growth of yeast without telomere capping by Cdc13 in the absence of Sgs1, Exo1, and Rad9.

Ngo HP, Lydall D.

PLoS Genet. 2010 Aug 19;6(8):e1001072. doi: 10.1371/journal.pgen.1001072.

6.

Hsp90 levels affect telomere length in yeast.

Grandin N, Charbonneau M.

Mol Genet Genomics. 2001 Mar;265(1):126-34.

PMID:
11370858
7.

Quantitative fitness analysis shows that NMD proteins and many other protein complexes suppress or enhance distinct telomere cap defects.

Addinall SG, Holstein EM, Lawless C, Yu M, Chapman K, Banks AP, Ngo HP, Maringele L, Taschuk M, Young A, Ciesiolka A, Lister AL, Wipat A, Wilkinson DJ, Lydall D.

PLoS Genet. 2011 Apr;7(4):e1001362. doi: 10.1371/journal.pgen.1001362. Epub 2011 Apr 7.

8.

Rad24 truncation, coupled with altered telomere structure, promotes cdc13-1 suppression in S. cerevisiae.

Small VY, Chuang C, Nugent CI.

Cell Cycle. 2008 Nov 1;7(21):3428-39. Epub 2008 Nov 15.

PMID:
18948753
9.

SUMOylation regulates telomere length homeostasis by targeting Cdc13.

Hang LE, Liu X, Cheung I, Yang Y, Zhao X.

Nat Struct Mol Biol. 2011 Jul 10;18(8):920-6. doi: 10.1038/nsmb.2100.

10.

Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination.

Grandin N, Damon C, Charbonneau M.

EMBO J. 2001 Nov 1;20(21):6127-39.

11.

The role of Stn1p in Saccharomyces cerevisiae telomere capping can be separated from its interaction with Cdc13p.

Petreaca RC, Chiu HC, Nugent CI.

Genetics. 2007 Nov;177(3):1459-74. Epub 2007 Oct 18.

13.

Rapid Cdc13 turnover and telomere length homeostasis are controlled by Cdk1-mediated phosphorylation of Cdc13.

Tseng SF, Shen ZJ, Tsai HJ, Lin YH, Teng SC.

Nucleic Acids Res. 2009 Jun;37(11):3602-11. doi: 10.1093/nar/gkp235. Epub 2009 Apr 9.

14.

Distinct roles for yeast Stn1 in telomere capping and telomerase inhibition.

Puglisi A, Bianchi A, Lemmens L, Damay P, Shore D.

EMBO J. 2008 Sep 3;27(17):2328-39. doi: 10.1038/emboj.2008.158.

16.

STM1, a gene which encodes a guanine quadruplex binding protein, interacts with CDC13 in Saccharomyces cerevisiae.

Hayashi N, Murakami S.

Mol Genet Genomics. 2002 Aug;267(6):806-13. Epub 2002 Jul 3.

PMID:
12207228
17.

Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase α.

Sun J, Yang Y, Wan K, Mao N, Yu TY, Lin YC, DeZwaan DC, Freeman BC, Lin JJ, Lue NF, Lei M.

Cell Res. 2011 Feb;21(2):258-74. doi: 10.1038/cr.2010.138. Epub 2010 Sep 28.

18.

Est1 and Cdc13 as comediators of telomerase access.

Evans SK, Lundblad V.

Science. 1999 Oct 1;286(5437):117-20.

19.

Structure prediction-driven genetics in Saccharomyces cerevisiae identifies an interface between the t-RPA proteins Stn1 and Ten1.

Paschini M, Mandell EK, Lundblad V.

Genetics. 2010 May;185(1):11-21. doi: 10.1534/genetics.109.111922. Epub 2010 Feb 15.

20.

Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance.

Nugent CI, Hughes TR, Lue NF, Lundblad V.

Science. 1996 Oct 11;274(5285):249-52.

PMID:
8824190

Supplemental Content

Support Center