Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Impaired associative taste learning and abnormal brain activation in kinase-defective eEF2K mice.

Gildish I, Manor D, David O, Sharma V, Williams D, Agarwala U, Wang X, Kenney JW, Proud CG, Rosenblum K.

Learn Mem. 2012 Feb 24;19(3):116-25. doi: 10.1101/lm.023937.111.

2.

NMDAR-dependent proteasome activity in the gustatory cortex is necessary for conditioned taste aversion.

Rosenberg T, Elkobi A, Dieterich DC, Rosenblum K.

Neurobiol Learn Mem. 2016 Apr;130:7-16. doi: 10.1016/j.nlm.2016.01.002. Epub 2016 Jan 16.

PMID:
26785229
3.

A molecular switch for translational control in taste memory consolidation.

Belelovsky K, Elkobi A, Kaphzan H, Nairn AC, Rosenblum K.

Eur J Neurosci. 2005 Nov;22(10):2560-8.

PMID:
16307598
4.

Phosphorylation of eukaryotic elongation factor 2 (eEF2) by cyclin A-cyclin-dependent kinase 2 regulates its inhibition by eEF2 kinase.

Hizli AA, Chi Y, Swanger J, Carter JH, Liao Y, Welcker M, Ryazanov AG, Clurman BE.

Mol Cell Biol. 2013 Feb;33(3):596-604. doi: 10.1128/MCB.01270-12. Epub 2012 Nov 26.

5.

Genetic or pharmacological reduction of PERK enhances cortical-dependent taste learning.

Ounallah-Saad H, Sharma V, Edry E, Rosenblum K.

J Neurosci. 2014 Oct 29;34(44):14624-32. doi: 10.1523/JNEUROSCI.2117-14.2014.

6.

A decrease in eukaryotic elongation factor 2 phosphorylation is required for local translation of sensorin and long-term facilitation in Aplysia.

McCamphill PK, Ferguson L, Sossin WS.

J Neurochem. 2017 Jul;142(2):246-259. doi: 10.1111/jnc.14030. Epub 2017 Apr 21.

PMID:
28345161
7.

Bidirectional regulation of eEF2 phosphorylation controls synaptic plasticity by decoding neuronal activity patterns.

McCamphill PK, Farah CA, Anadolu MN, Hoque S, Sossin WS.

J Neurosci. 2015 Mar 11;35(10):4403-17. doi: 10.1523/JNEUROSCI.2376-14.2015.

8.

Elongation Factor 2 Kinase Is Regulated by Proline Hydroxylation and Protects Cells during Hypoxia.

Moore CE, Mikolajek H, Regufe da Mota S, Wang X, Kenney JW, Werner JM, Proud CG.

Mol Cell Biol. 2015 May;35(10):1788-804. doi: 10.1128/MCB.01457-14. Epub 2015 Mar 9.

9.

A Ca(2+)-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions.

Rose AJ, Alsted TJ, Jensen TE, Kobberø JB, Maarbjerg SJ, Jensen J, Richter EA.

J Physiol. 2009 Apr 1;587(Pt 7):1547-63. doi: 10.1113/jphysiol.2008.167528. Epub 2009 Feb 2.

10.

Eukaryotic elongation factor 2 kinase activity is controlled by multiple inputs from oncogenic signaling.

Wang X, Regufe da Mota S, Liu R, Moore CE, Xie J, Lanucara F, Agarwala U, Pyr Dit Ruys S, Vertommen D, Rider MH, Eyers CE, Proud CG.

Mol Cell Biol. 2014 Nov 15;34(22):4088-103. doi: 10.1128/MCB.01035-14. Epub 2014 Sep 2.

11.

Coupled activation and degradation of eEF2K regulates protein synthesis in response to genotoxic stress.

Kruiswijk F, Yuniati L, Magliozzi R, Low TY, Lim R, Bolder R, Mohammed S, Proud CG, Heck AJ, Pagano M, Guardavaccaro D.

Sci Signal. 2012 Jun 5;5(227):ra40. doi: 10.1126/scisignal.2002718.

12.

Pharmacological eEF2K activation promotes cell death and inhibits cancer progression.

De Gassart A, Demaria O, Panes R, Zaffalon L, Ryazanov AG, Gilliet M, Martinon F.

EMBO Rep. 2016 Oct;17(10):1471-1484. Epub 2016 Aug 29.

13.

Lopinavir impairs protein synthesis and induces eEF2 phosphorylation via the activation of AMP-activated protein kinase.

Hong-Brown LQ, Brown CR, Huber DS, Lang CH.

J Cell Biochem. 2008 Oct 15;105(3):814-23. doi: 10.1002/jcb.21882.

14.

Thermal injury activates the eEF2K-dependent eEF2 pathway in pediatric patients.

Song J, Finnerty CC, Herndon DN, Kraft R, Boehning D, Brooks NC, Tompkins RG, Jeschke MG.

JPEN J Parenter Enteral Nutr. 2012 Sep;36(5):596-602. doi: 10.1177/0148607111422234. Epub 2012 Jan 23.

15.

Eukaryotic elongation factor 2 kinase confers tolerance to stress conditions in cancer cells.

Zhu H, Yang X, Liu J, Zhou L, Zhang C, Xu L, Qin Q, Zhan L, Lu J, Cheng H, Sun X.

Cell Stress Chaperones. 2015 Mar;20(2):217-20. doi: 10.1007/s12192-014-0545-0. Epub 2014 Sep 24. Review.

16.

Regulation and roles of elongation factor 2 kinase.

Proud CG.

Biochem Soc Trans. 2015 Jun;43(3):328-32. doi: 10.1042/BST20140323. Review.

PMID:
26009171
17.

Identification of autophosphorylation sites in eukaryotic elongation factor-2 kinase.

Pyr Dit Ruys S, Wang X, Smith EM, Herinckx G, Hussain N, Rider MH, Vertommen D, Proud CG.

Biochem J. 2012 Mar 15;442(3):681-92. doi: 10.1042/BJ20111530. Erratum in: Biochem J. 2012 Apr 1;443(1):328.

18.

Molecular Mechanism for the Control of Eukaryotic Elongation Factor 2 Kinase by pH: Role in Cancer Cell Survival.

Xie J, Mikolajek H, Pigott CR, Hooper KJ, Mellows T, Moore CE, Mohammed H, Werner JM, Thomas GJ, Proud CG.

Mol Cell Biol. 2015 May;35(10):1805-24. doi: 10.1128/MCB.00012-15. Epub 2015 Mar 16.

19.

Requirement of new protein synthesis of a transcription factor for memory consolidation: paradoxical changes in mRNA and protein levels of C/EBP.

Hatakeyama D, Sadamoto H, Watanabe T, Wagatsuma A, Kobayashi S, Fujito Y, Yamashita M, Sakakibara M, Kemenes G, Ito E.

J Mol Biol. 2006 Feb 24;356(3):569-77. Epub 2005 Dec 19.

PMID:
16403525
20.

cdc2-cyclin B regulates eEF2 kinase activity in a cell cycle- and amino acid-dependent manner.

Smith EM, Proud CG.

EMBO J. 2008 Apr 9;27(7):1005-16. doi: 10.1038/emboj.2008.39. Epub 2008 Mar 13.

Supplemental Content

Support Center