Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 83

1.

Saccharomyces cerevisiae MHF complex structurally resembles the histones (H3-H4)₂ heterotetramer and functions as a heterotetramer.

Yang H, Zhang T, Tao Y, Wu L, Li HT, Zhou JQ, Zhong C, Ding J.

Structure. 2012 Feb 8;20(2):364-70. doi: 10.1016/j.str.2011.12.012.

2.

Structural peculiarities of the (MHF1-MHF2)4 octamer provide a long DNA binding patch to anchor the MHF-FANCM complex to chromatin: a solution SAXS study.

Wang W, Guo Q, Shtykova EV, Liu G, Xu J, Teng M, Liu P, Dong Y.

FEBS Lett. 2013 Sep 17;587(18):2912-7. doi: 10.1016/j.febslet.2013.07.022. Epub 2013 Jul 22.

3.

The histone-fold complex MHF is remodeled by FANCM to recognize branched DNA and protect genome stability.

Fox D 3rd, Yan Z, Ling C, Zhao Y, Lee DY, Fukagawa T, Yang W, Wang W.

Cell Res. 2014 May;24(5):560-75. doi: 10.1038/cr.2014.42. Epub 2014 Apr 4.

4.

The structure of the FANCM-MHF complex reveals physical features for functional assembly.

Tao Y, Jin C, Li X, Qi S, Chu L, Niu L, Yao X, Teng M.

Nat Commun. 2012 Apr 17;3:782. doi: 10.1038/ncomms1779.

5.

Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the ego complex to activate TORC1.

Zhang T, Péli-Gulli MP, Yang H, De Virgilio C, Ding J.

Structure. 2012 Dec 5;20(12):2151-60. doi: 10.1016/j.str.2012.09.019. Epub 2012 Nov 1.

6.

MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM.

Singh TR, Saro D, Ali AM, Zheng XF, Du CH, Killen MW, Sachpatzidis A, Wahengbam K, Pierce AJ, Xiong Y, Sung P, Meetei AR.

Mol Cell. 2010 Mar 26;37(6):879-86. doi: 10.1016/j.molcel.2010.01.036.

7.

Crystal structures of fission yeast histone chaperone Asf1 complexed with the Hip1 B-domain or the Cac2 C terminus.

Malay AD, Umehara T, Matsubara-Malay K, Padmanabhan B, Yokoyama S.

J Biol Chem. 2008 May 16;283(20):14022-31. doi: 10.1074/jbc.M800594200. Epub 2008 Mar 11.

8.

A prototypical Fanconi anemia pathway in lower eukaryotes?

McHugh PJ, Ward TA, Chovanec M.

Cell Cycle. 2012 Oct 15;11(20):3739-44. doi: 10.4161/cc.21727. Epub 2012 Aug 16.

9.

Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14.

Kasten M, Szerlong H, Erdjument-Bromage H, Tempst P, Werner M, Cairns BR.

EMBO J. 2004 Mar 24;23(6):1348-59. Epub 2004 Mar 4.

10.

Structural basis for cell cycle checkpoint control by the BRCA1-CtIP complex.

Varma AK, Brown RS, Birrane G, Ladias JA.

Biochemistry. 2005 Aug 23;44(33):10941-6.

PMID:
16101277
12.

Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae.

Hyland EM, Cosgrove MS, Molina H, Wang D, Pandey A, Cottee RJ, Boeke JD.

Mol Cell Biol. 2005 Nov;25(22):10060-70.

13.

Structural insights into the functions of the FANCM-FAAP24 complex in DNA repair.

Yang H, Zhang T, Tao Y, Wang F, Tong L, Ding J.

Nucleic Acids Res. 2013 Dec;41(22):10573-83. doi: 10.1093/nar/gkt788. Epub 2013 Sep 3.

14.

The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain.

Chen Y, Baker RE, Keith KC, Harris K, Stoler S, Fitzgerald-Hayes M.

Mol Cell Biol. 2000 Sep;20(18):7037-48.

15.

Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation.

Pray-Grant MG, Daniel JA, Schieltz D, Yates JR 3rd, Grant PA.

Nature. 2005 Jan 27;433(7024):434-8. Epub 2005 Jan 12.

PMID:
15647753
16.

Histone-histone interactions and centromere function.

Glowczewski L, Yang P, Kalashnikova T, Santisteban MS, Smith MM.

Mol Cell Biol. 2000 Aug;20(15):5700-11.

17.
18.

Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4.

Natsume R, Eitoku M, Akai Y, Sano N, Horikoshi M, Senda T.

Nature. 2007 Mar 15;446(7133):338-41. Epub 2007 Feb 11.

PMID:
17293877
19.

Structural similarity between TAFs and the heterotetrameric core of the histone octamer.

Xie X, Kokubo T, Cohen SL, Mirza UA, Hoffmann A, Chait BT, Roeder RG, Nakatani Y, Burley SK.

Nature. 1996 Mar 28;380(6572):316-22.

PMID:
8598927
20.

Structural analysis of Shu proteins reveals a DNA binding role essential for resisting damage.

Tao Y, Li X, Liu Y, Ruan J, Qi S, Niu L, Teng M.

J Biol Chem. 2012 Jun 8;287(24):20231-9. doi: 10.1074/jbc.M111.334698. Epub 2012 Mar 30.

Supplemental Content

Support Center