Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 63

1.

Identification of a molecular component of the mitochondrial acetyltransferase programme: a novel role for GCN5L1.

Scott I, Webster BR, Li JH, Sack MN.

Biochem J. 2012 May 1;443(3):655-61. doi: 10.1042/BJ20120118.

PMID:
22309213
2.

Restricted mitochondrial protein acetylation initiates mitochondrial autophagy.

Webster BR, Scott I, Han K, Li JH, Lu Z, Stevens MV, Malide D, Chen Y, Samsel L, Connelly PS, Daniels MP, McCoy JP Jr, Combs CA, Gucek M, Sack MN.

J Cell Sci. 2013 Nov 1;126(Pt 21):4843-9. doi: 10.1242/jcs.131300. Epub 2013 Sep 4.

3.

Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

Di Domenico A, Hofer A, Tundo F, Wenz T.

IUBMB Life. 2014 Nov;66(11):793-802. doi: 10.1002/iub.1328. Epub 2014 Nov 15. Erratum in: IUBMB Life. 2017 Jul;69(7):553.

4.

Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.

Thapa D, Zhang M, Manning JR, Guimarães D, Stoner M, O'Doherty RM, Shiva S, Scott I.

Am J Physiol Heart Circ Physiol. 2017 May 19:ajpheart.00752.2016. doi: 10.1152/ajpheart.00752.2016. [Epub ahead of print]

PMID:
28526709
5.

Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice.

Fritz KS, Galligan JJ, Hirschey MD, Verdin E, Petersen DR.

J Proteome Res. 2012 Mar 2;11(3):1633-43. doi: 10.1021/pr2008384. Epub 2012 Feb 21.

6.

Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation.

Jing E, O'Neill BT, Rardin MJ, Kleinridders A, Ilkeyeva OR, Ussar S, Bain JR, Lee KY, Verdin EM, Newgard CB, Gibson BW, Kahn CR.

Diabetes. 2013 Oct;62(10):3404-17. doi: 10.2337/db12-1650. Epub 2013 Jul 8.

7.

GCN5-like protein 1 (GCN5L1) controls mitochondrial content through coordinated regulation of mitochondrial biogenesis and mitophagy.

Scott I, Webster BR, Chan CK, Okonkwo JU, Han K, Sack MN.

J Biol Chem. 2014 Jan 31;289(5):2864-72. doi: 10.1074/jbc.M113.521641. Epub 2013 Dec 19.

8.

Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization.

Yang W, Nagasawa K, Münch C, Xu Y, Satterstrom K, Jeong S, Hayes SD, Jedrychowski MP, Vyas FS, Zaganjor E, Guarani V, Ringel AE, Gygi SP, Harper JW, Haigis MC.

Cell. 2016 Nov 3;167(4):985-1000.e21. doi: 10.1016/j.cell.2016.10.016. Epub 2016 Oct 27.

PMID:
27881304
9.

Proteomic investigations of lysine acetylation identify diverse substrates of mitochondrial deacetylase sirt3.

Sol EM, Wagner SA, Weinert BT, Kumar A, Kim HS, Deng CX, Choudhary C.

PLoS One. 2012;7(12):e50545. doi: 10.1371/journal.pone.0050545. Epub 2012 Dec 7.

10.

Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria.

Cimen H, Han MJ, Yang Y, Tong Q, Koc H, Koc EC.

Biochemistry. 2010 Jan 19;49(2):304-11. doi: 10.1021/bi901627u.

11.

Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation.

Lombard DB, Alt FW, Cheng HL, Bunkenborg J, Streeper RS, Mostoslavsky R, Kim J, Yancopoulos G, Valenzuela D, Murphy A, Yang Y, Chen Y, Hirschey MD, Bronson RT, Haigis M, Guarente LP, Farese RV Jr, Weissman S, Verdin E, Schwer B.

Mol Cell Biol. 2007 Dec;27(24):8807-14. Epub 2007 Oct 8.

12.

Sirtuin 3 interacts with Lon protease and regulates its acetylation status.

Gibellini L, Pinti M, Beretti F, Pierri CL, Onofrio A, Riccio M, Carnevale G, De Biasi S, Nasi M, Torelli F, Boraldi F, De Pol A, Cossarizza A.

Mitochondrion. 2014 Sep;18:76-81. doi: 10.1016/j.mito.2014.08.001. Epub 2014 Aug 13.

PMID:
25128872
13.

Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects from apoptotic cell death under oxidative stress.

Cheng Y, Ren X, Gowda AS, Shan Y, Zhang L, Yuan YS, Patel R, Wu H, Huber-Keener K, Yang JW, Liu D, Spratt TE, Yang JM.

Cell Death Dis. 2013 Jul 18;4:e731. doi: 10.1038/cddis.2013.254.

14.

Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2.

Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E.

Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10224-9. Epub 2006 Jun 20.

15.

Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges.

Cheng A, Yang Y, Zhou Y, Maharana C, Lu D, Peng W, Liu Y, Wan R, Marosi K, Misiak M, Bohr VA, Mattson MP.

Cell Metab. 2016 Jan 12;23(1):128-42. doi: 10.1016/j.cmet.2015.10.013. Epub 2015 Nov 19.

16.

Dietary restriction increases protein acetylation in the livers of aged rats.

Nakamura A, Kawakami K, Kametani F, Goto S.

Gerontology. 2013;59(6):542-8. doi: 10.1159/000354087. Epub 2013 Aug 30.

PMID:
24008504
17.

Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways.

Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E, Gibson BW.

Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6601-6. doi: 10.1073/pnas.1302961110. Epub 2013 Apr 1.

18.

The role of SIRT3 in mitochondrial homeostasis and cardiac adaptation to hypertrophy and aging.

Sack MN.

J Mol Cell Cardiol. 2012 Mar;52(3):520-5. doi: 10.1016/j.yjmcc.2011.11.004. Epub 2011 Nov 19. Review.

19.

Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the heart.

Sack MN.

Am J Physiol Heart Circ Physiol. 2011 Dec;301(6):H2191-7. doi: 10.1152/ajpheart.00199.2011. Epub 2011 Oct 7. Review.

20.

Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome.

Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM, Coon JJ.

Mol Cell. 2013 Jan 10;49(1):186-99. doi: 10.1016/j.molcel.2012.10.024. Epub 2012 Nov 29.

Supplemental Content

Support Center