Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 138

1.

A mouse model of vitiligo with focused epidermal depigmentation requires IFN-γ for autoreactive CD8⁺ T-cell accumulation in the skin.

Harris JE, Harris TH, Weninger W, Wherry EJ, Hunter CA, Turka LA.

J Invest Dermatol. 2012 Jul;132(7):1869-76. doi: 10.1038/jid.2011.463. Epub 2012 Feb 2.

2.

Melanocyte-specific CD8+ T cells are associated with epidermal depigmentation in a novel mouse model of vitiligo.

You S, Cho YH, Byun JS, Shin EC.

Clin Exp Immunol. 2013 Oct;174(1):38-44. doi: 10.1111/cei.12146.

3.

Autoimmune vitiligo does not require the ongoing priming of naive CD8 T cells for disease progression or associated protection against melanoma.

Byrne KT, Zhang P, Steinberg SM, Turk MJ.

J Immunol. 2014 Feb 15;192(4):1433-9. doi: 10.4049/jimmunol.1302139. Epub 2014 Jan 8.

4.

Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo.

Agarwal P, Rashighi M, Essien KI, Richmond JM, Randall L, Pazoki-Toroudi H, Hunter CA, Harris JE.

J Invest Dermatol. 2015 Apr;135(4):1080-8. doi: 10.1038/jid.2014.529. Epub 2014 Dec 18.

5.

A quantitative increase in regulatory T cells controls development of vitiligo.

Chatterjee S, Eby JM, Al-Khami AA, Soloshchenko M, Kang HK, Kaur N, Naga OS, Murali A, Nishimura MI, Le Poole IC, Mehrotra S.

J Invest Dermatol. 2014 May;134(5):1285-94. doi: 10.1038/jid.2013.540. Epub 2013 Dec 23.

6.

Immunopolarization of CD4+ and CD8+ T cells to Type-1-like is associated with melanocyte loss in human vitiligo.

Wańkowicz-Kalińska A, van den Wijngaard RM, Tigges BJ, Westerhof W, Ogg GS, Cerundolo V, Storkus WJ, Das PK.

Lab Invest. 2003 May;83(5):683-95.

PMID:
12746478
7.

CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo.

Rashighi M, Agarwal P, Richmond JM, Harris TH, Dresser K, Su MW, Zhou Y, Deng A, Hunter CA, Luster AD, Harris JE.

Sci Transl Med. 2014 Feb 12;6(223):223ra23. doi: 10.1126/scitranslmed.3007811.

8.

Engineering a new mouse model for vitiligo.

Manga P, Orlow SJ.

J Invest Dermatol. 2012 Jul;132(7):1752-5. doi: 10.1038/jid.2012.140.

9.

Mutant HSP70 reverses autoimmune depigmentation in vitiligo.

Mosenson JA, Zloza A, Nieland JD, Garrett-Mayer E, Eby JM, Huelsmann EJ, Kumar P, Denman CJ, Lacek AT, Kohlhapp FJ, Alamiri A, Hughes T, Bines SD, Kaufman HL, Overbeck A, Mehrotra S, Hernandez C, Nishimura MI, Guevara-Patino JA, Le Poole IC.

Sci Transl Med. 2013 Feb 27;5(174):174ra28. doi: 10.1126/scitranslmed.3005127.

10.

A mouse model of vitiligo induced by monobenzone.

Zhu Y, Wang S, Xu A.

Exp Dermatol. 2013 Jul;22(7):499-501. doi: 10.1111/exd.12184.

PMID:
23800067
11.

Immune responses in a mouse model of vitiligo with spontaneous epidermal de- and repigmentation.

Eby JM, Kang HK, Klarquist J, Chatterjee S, Mosenson JA, Nishimura MI, Garrett-Mayer E, Longley BJ, Engelhard VH, Mehrotra S, Le Poole IC.

Pigment Cell Melanoma Res. 2014 Nov;27(6):1075-85. doi: 10.1111/pcmr.12284. Epub 2014 Jul 21.

12.

Langerhans' cells in hair follicles of the depigmenting C57Bl/Ler-vit.vit mouse. A model for human vitiligo.

Palkowski MR, Nordlund ML, Rheins LA, Nordlund JJ.

Arch Dermatol. 1987 Aug;123(8):1022-8.

PMID:
2443080
13.

Interferon-gamma Inhibits Melanogenesis and Induces Apoptosis in Melanocytes: A Pivotal Role of CD8+ Cytotoxic T Lymphocytes in Vitiligo.

Yang L, Wei Y, Sun Y, Shi W, Yang J, Zhu L, Li M.

Acta Derm Venereol. 2015 Jul;95(6):664-70. doi: 10.2340/00015555-2080.

14.

First histopathological and immunophenotypic analysis of early dynamic events in a patient with segmental vitiligo associated with halo nevi.

van Geel NA, Mollet IG, De Schepper S, Tjin EP, Vermaelen K, Clark RA, Kupper TS, Luiten RM, Lambert J.

Pigment Cell Melanoma Res. 2010 Jun;23(3):375-84. doi: 10.1111/j.1755-148X.2010.00703.x. Epub 2010 Apr 1.

PMID:
20370855
15.
16.

Mechanisms of spatial and temporal development of autoimmune vitiligo in tyrosinase-specific TCR transgenic mice.

Gregg RK, Nichols L, Chen Y, Lu B, Engelhard VH.

J Immunol. 2010 Feb 15;184(4):1909-17. doi: 10.4049/jimmunol.0902778. Epub 2010 Jan 18.

17.

CCL22 to Activate Treg Migration and Suppress Depigmentation in Vitiligo.

Eby JM, Kang HK, Tully ST, Bindeman WE, Peiffer DS, Chatterjee S, Mehrotra S, Le Poole IC.

J Invest Dermatol. 2015 Jun;135(6):1574-1580. doi: 10.1038/jid.2015.26. Epub 2015 Jan 9.

18.

Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients.

van den Boorn JG, Konijnenberg D, Dellemijn TA, van der Veen JP, Bos JD, Melief CJ, Vyth-Dreese FA, Luiten RM.

J Invest Dermatol. 2009 Sep;129(9):2220-32. doi: 10.1038/jid.2009.32. Epub 2009 Feb 26.

19.

Keratinocyte-Derived Chemokines Orchestrate T-Cell Positioning in the Epidermis during Vitiligo and May Serve as Biomarkers of Disease.

Richmond JM, Bangari DS, Essien KI, Currimbhoy SD, Groom JR, Pandya AG, Youd ME, Luster AD, Harris JE.

J Invest Dermatol. 2017 Feb;137(2):350-358. doi: 10.1016/j.jid.2016.09.016. Epub 2016 Sep 26.

PMID:
27686391
20.

Lack of functionally active Melan-A(26-35)-specific T cells in the blood of HLA-A2+ vitiligo patients.

Adams S, Lowes MA, O'Neill DW, Schachterle S, Romero P, Bhardwaj N.

J Invest Dermatol. 2008 Aug;128(8):1977-80. doi: 10.1038/jid.2008.31. Epub 2008 Mar 13.

Supplemental Content

Support Center