Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116

1.

Reinforcement of electrospun membranes using nanoscale Al2O3 whiskers for improved tissue scaffolds.

Dong Z, Wu Y, Wang Q, Xie C, Ren Y, Clark RL.

J Biomed Mater Res A. 2012 Apr;100(4):903-10. doi: 10.1002/jbm.a.34027. Epub 2012 Jan 24.

PMID:
22275136
2.

Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning.

Thomas V, Jose MV, Chowdhury S, Sullivan JF, Dean DR, Vohra YK.

J Biomater Sci Polym Ed. 2006;17(9):969-84.

PMID:
17094636
3.

Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering.

Thomas V, Jagani S, Johnson K, Jose MV, Dean DR, Vohra YK, Nyairo E.

J Nanosci Nanotechnol. 2006 Feb;6(2):487-93.

PMID:
16573049
4.

Surface-modified electrospun poly(epsilon-caprolactone) scaffold with improved optical transparency and bioactivity for damaged ocular surface reconstruction.

Sharma S, Gupta D, Mohanty S, Jassal M, Agrawal AK, Tandon R.

Invest Ophthalmol Vis Sci. 2014 Feb 12;55(2):899-907. doi: 10.1167/iovs.13-12727.

PMID:
24425860
5.

The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.

Lee SJ, Oh SH, Liu J, Soker S, Atala A, Yoo JJ.

Biomaterials. 2008 Apr;29(10):1422-30. Epub 2007 Dec 21.

PMID:
18096219
6.

Mechanical testing of electrospun PCL fibers.

Croisier F, Duwez AS, Jérôme C, Léonard AF, van der Werf KO, Dijkstra PJ, Bennink ML.

Acta Biomater. 2012 Jan;8(1):218-24. doi: 10.1016/j.actbio.2011.08.015. Epub 2011 Aug 22.

PMID:
21878398
7.

Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds.

Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM.

J Biomed Mater Res B Appl Biomater. 2005 Jan 15;72(1):156-65.

PMID:
15389493
8.

Development of novel electrospun absorbable polycaprolactone (PCL) scaffolds for hernia repair applications.

Ebersole GC, Buettmann EG, MacEwan MR, Tang ME, Frisella MM, Matthews BD, Deeken CR.

Surg Endosc. 2012 Oct;26(10):2717-28. Epub 2012 Apr 27.

PMID:
22538673
9.

In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone).

Seyednejad H, Gawlitta D, Kuiper RV, de Bruin A, van Nostrum CF, Vermonden T, Dhert WJ, Hennink WE.

Biomaterials. 2012 Jun;33(17):4309-18. doi: 10.1016/j.biomaterials.2012.03.002. Epub 2012 Mar 20.

PMID:
22436798
10.

Structural characterization and cell response evaluation of electrospun PCL membranes: micrometric versus submicrometric fibers.

Del Gaudio C, Bianco A, Folin M, Baiguera S, Grigioni M.

J Biomed Mater Res A. 2009 Jun 15;89(4):1028-39. doi: 10.1002/jbm.a.32048.

PMID:
18478554
11.

A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering.

Nguyen TH, Bao TQ, Park I, Lee BT.

J Biomater Appl. 2013 Nov;28(4):514-28. doi: 10.1177/0885328212462257. Epub 2012 Oct 17.

PMID:
23075833
12.

Magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes for bone regeneration.

Wei Y, Zhang X, Song Y, Han B, Hu X, Wang X, Lin Y, Deng X.

Biomed Mater. 2011 Oct;6(5):055008. doi: 10.1088/1748-6041/6/5/055008. Epub 2011 Sep 5.

PMID:
21893702
13.

Poly(ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity.

Wan C, Chen B.

Biomed Mater. 2011 Oct;6(5):055010. doi: 10.1088/1748-6041/6/5/055010. Epub 2011 Sep 16.

PMID:
21921319
14.

Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration.

Thomas V, Zhang X, Catledge SA, Vohra YK.

Biomed Mater. 2007 Dec;2(4):224-32. doi: 10.1088/1748-6041/2/4/004. Epub 2007 Oct 8.

PMID:
18458479
15.

Electrospun bio-composite P(LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering.

Kijeńska E, Prabhakaran MP, Swieszkowski W, Kurzydlowski KJ, Ramakrishna S.

J Biomed Mater Res B Appl Biomater. 2012 May;100(4):1093-102. doi: 10.1002/jbm.b.32676. Epub 2012 Mar 21.

PMID:
22438340
16.

Sol-gel derived nanoscale bioactive glass (NBG) particles reinforced poly(ε-caprolactone) composites for bone tissue engineering.

Lei B, Shin KH, Noh DY, Jo IH, Koh YH, Kim HE, Kim SE.

Mater Sci Eng C Mater Biol Appl. 2013 Apr 1;33(3):1102-8. doi: 10.1016/j.msec.2012.11.039. Epub 2012 Dec 8.

PMID:
23827548
17.

Electrospun fibrous scaffold of hydroxyapatite/poly (ε-caprolactone) for bone regeneration.

Li L, Li G, Jiang J, Liu X, Luo L, Nan K.

J Mater Sci Mater Med. 2012 Feb;23(2):547-54. doi: 10.1007/s10856-011-4495-0. Epub 2011 Dec 6.

PMID:
22143907
18.

Fabrication of highly porous poly (ɛ-caprolactone) fibers for novel tissue scaffold via water-bath electrospinning.

Pant HR, Neupane MP, Pant B, Panthi G, Oh HJ, Lee MH, Kim HY.

Colloids Surf B Biointerfaces. 2011 Dec 1;88(2):587-92. doi: 10.1016/j.colsurfb.2011.07.045. Epub 2011 Jul 26.

PMID:
21856134
19.

Preparation and properties of nano-hydroxyapatite/PCL-PEG-PCL composite membranes for tissue engineering applications.

Fu SZ, Wang XH, Guo G, Shi S, Fan M, Liang H, Luo F, Qian ZY.

J Biomed Mater Res B Appl Biomater. 2011 Apr;97(1):74-83. doi: 10.1002/jbm.b.31788. Epub 2011 Feb 2.

PMID:
21290585
20.

Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering.

Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S.

Tissue Eng Part A. 2008 Nov;14(11):1787-97. doi: 10.1089/ten.tea.2007.0393.

PMID:
18657027

Supplemental Content

Support Center