Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 79

1.

Mitochondrial ATP synthase catalytic mechanism: a novel visual comparative structural approach emphasizes pivotal roles for Mg²⁺ and P-loop residues in making ATP.

Blum DJ, Ko YH, Pedersen PL.

Biochemistry. 2012 Feb 21;51(7):1532-46. doi: 10.1021/bi201595v. Epub 2012 Feb 9.

PMID:
22243519
4.

Mitochondrial ATP synthase. Crystal structure of the catalytic F1 unit in a vanadate-induced transition-like state and implications for mechanism.

Chen C, Saxena AK, Simcoke WN, Garboczi DN, Pedersen PL, Ko YH.

J Biol Chem. 2006 May 12;281(19):13777-83. Epub 2006 Mar 10.

5.

The transition-like state and Pi entrance into the catalytic a subunit of the biological engine A-ATP synthase.

Manimekalai MS, Kumar A, Jeyakanthan J, Grüber G.

J Mol Biol. 2011 May 13;408(4):736-54. doi: 10.1016/j.jmb.2011.03.010. Epub 2011 Mar 17.

PMID:
21396943
6.

Structures and interactions of proteins involved in the coupling function of the protonmotive F(o)F(1)-ATP synthase.

Gaballo A, Zanotti F, Papa S.

Curr Protein Pept Sci. 2002 Aug;3(4):451-60. Review.

PMID:
12370007
7.

Role of phosphate chain mobility of MgATP in completing the 3-phosphoglycerate kinase catalytic site: binding, kinetic, and crystallographic studies with ATP and MgATP.

Flachner B, Kovári Z, Varga A, Gugolya Z, Vonderviszt F, Náray-Szabó G, Vas M.

Biochemistry. 2004 Mar 30;43(12):3436-49. Erratum in: Biochemistry. 2004 May 11;43(18):5574.

PMID:
15035615
8.

Rate acceleration of ATP hydrolysis by F(1)F(o)-ATP synthase.

Senior AE, Nadanaciva S, Weber J.

J Exp Biol. 2000 Jan;203(Pt 1):35-40. Review.

9.

ATP-driven rotation of the gamma subunit in F(1)-ATPase.

Weber J, Nadanaciva S, Senior AE.

FEBS Lett. 2000 Oct 13;483(1):1-5.

10.

Rapid hydrolysis of ATP by mitochondrial F1-ATPase correlates with the filling of the second of three catalytic sites.

Milgrom YM, Cross RL.

Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13831-6. Epub 2005 Sep 19.

11.

ATP hydrolysis in the betaTP and betaDP catalytic sites of F1-ATPase.

Dittrich M, Hayashi S, Schulten K.

Biophys J. 2004 Nov;87(5):2954-67. Epub 2004 Aug 17.

12.
13.

Determination of the partial reactions of rotational catalysis in F1-ATPase.

Scanlon JA, Al-Shawi MK, Le NP, Nakamoto RK.

Biochemistry. 2007 Jul 31;46(30):8785-97. Epub 2007 Jul 10.

PMID:
17620014
14.

Investigation of the substrate structure and metal cofactor requirements of the rat liver mitochondrial ATP synthase/ATPase complex.

Hanley-Trawick S, Carpen ME, Dunaway-Mariano D, Pedersen PL, Hullihen J.

Arch Biochem Biophys. 1989 Jan;268(1):116-23.

PMID:
2521440
15.

Nucleotide binding states of subunit A of the A-ATP synthase and the implication of P-loop switch in evolution.

Kumar A, Manimekalai MS, Balakrishna AM, Jeyakanthan J, Grüber G.

J Mol Biol. 2010 Feb 19;396(2):301-20. doi: 10.1016/j.jmb.2009.11.046. Epub 2009 Nov 26.

PMID:
19944110
16.
17.

Regulatory mechanisms of proton-translocating F(O)F (1)-ATP synthase.

Feniouk BA, Yoshida M.

Results Probl Cell Differ. 2008;45:279-308. Review.

PMID:
18026702
18.

Importance of F1-ATPase residue alpha-Arg-376 for catalytic transition state stabilization.

Nadanaciva S, Weber J, Wilke-Mounts S, Senior AE.

Biochemistry. 1999 Nov 23;38(47):15493-9.

PMID:
10569931
20.

Interaction between the catalytic site and the A-M3 linker stabilizes E2/E2P conformational states of Na+,K+-ATPase.

Toustrup-Jensen M, Vilsen B.

J Biol Chem. 2005 Mar 18;280(11):10210-8. Epub 2004 Nov 30.

Supplemental Content

Support Center