Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 145

1.

Loss of correlations among proteins in brains of the Ts65Dn mouse model of down syndrome.

Ahmed MM, Sturgeon X, Ellison M, Davisson MT, Gardiner KJ.

J Proteome Res. 2012 Feb 3;11(2):1251-63. doi: 10.1021/pr2011582. Epub 2012 Jan 25.

PMID:
22214338
2.

Protein profiles in Tc1 mice implicate novel pathway perturbations in the Down syndrome brain.

Ahmed MM, Dhanasekaran AR, Tong S, Wiseman FK, Fisher EM, Tybulewicz VL, Gardiner KJ.

Hum Mol Genet. 2013 May 1;22(9):1709-24. doi: 10.1093/hmg/ddt017. Epub 2013 Jan 24.

3.

Protein dynamics associated with failed and rescued learning in the Ts65Dn mouse model of Down syndrome.

Ahmed MM, Dhanasekaran AR, Block A, Tong S, Costa AC, Stasko M, Gardiner KJ.

PLoS One. 2015 Mar 20;10(3):e0119491. doi: 10.1371/journal.pone.0119491. eCollection 2015.

4.

Machine learning methods predict locomotor response to MK-801 in mouse models of down syndrome.

Nguyen CD, Costa AC, Cios KJ, Gardiner KJ.

J Neurogenet. 2011 Mar;25(1-2):40-51. doi: 10.3109/01677063.2011.558606. Epub 2011 Mar 10.

PMID:
21391779
5.

Normalization of Dyrk1A expression by AAV2/1-shDyrk1A attenuates hippocampal-dependent defects in the Ts65Dn mouse model of Down syndrome.

Altafaj X, Martín ED, Ortiz-Abalia J, Valderrama A, Lao-Peregrín C, Dierssen M, Fillat C.

Neurobiol Dis. 2013 Apr;52:117-27. doi: 10.1016/j.nbd.2012.11.017. Epub 2012 Dec 5.

PMID:
23220201
6.

Molecular responses of the Ts65Dn and Ts1Cje mouse models of Down syndrome to MK-801.

Siddiqui A, Lacroix T, Stasko MR, Scott-McKean JJ, Costa AC, Gardiner KJ.

Genes Brain Behav. 2008 Oct;7(7):810-20. doi: 10.1111/j.1601-183X.2008.00428.x.

7.

Abnormal expression of synaptic proteins and neurotrophin-3 in the Down syndrome mouse model Ts65Dn.

Pollonini G, Gao V, Rabe A, Palminiello S, Albertini G, Alberini CM.

Neuroscience. 2008 Sep 22;156(1):99-106. doi: 10.1016/j.neuroscience.2008.07.025. Epub 2008 Jul 25.

8.

Differential effects of trisomy on brain shape and volume in related aneuploid mouse models.

Aldridge K, Reeves RH, Olson LE, Richtsmeier JT.

Am J Med Genet A. 2007 May 15;143A(10):1060-70.

9.

Expression of trisomic proteins in Down syndrome model systems.

Spellman C, Ahmed MM, Dubach D, Gardiner KJ.

Gene. 2013 Jan 10;512(2):219-25. doi: 10.1016/j.gene.2012.10.051. Epub 2012 Oct 26.

PMID:
23103828
10.

Sex differences in protein expression in the mouse brain and their perturbations in a model of Down syndrome.

Block A, Ahmed MM, Dhanasekaran AR, Tong S, Gardiner KJ.

Biol Sex Differ. 2015 Nov 9;6:24. doi: 10.1186/s13293-015-0043-9. eCollection 2015.

11.

Age exacerbates abnormal protein expression in a mouse model of Down syndrome.

Ahmed MM, Block A, Tong S, Davisson MT, Gardiner KJ.

Neurobiol Aging. 2017 Sep;57:120-132. doi: 10.1016/j.neurobiolaging.2017.05.002. Epub 2017 May 10.

PMID:
28641136
12.

Mouse models of Down syndrome: gene content and consequences.

Gupta M, Dhanasekaran AR, Gardiner KJ.

Mamm Genome. 2016 Dec;27(11-12):538-555. Epub 2016 Aug 18. Review.

13.

On the cause of mental retardation in Down syndrome: extrapolation from full and segmental trisomy 16 mouse models.

Galdzicki Z, Siarey R, Pearce R, Stoll J, Rapoport SI.

Brain Res Brain Res Rev. 2001 Apr;35(2):115-45. Review.

PMID:
11336779
14.

Highly penetrant myeloproliferative disease in the Ts65Dn mouse model of Down syndrome.

Kirsammer G, Jilani S, Liu H, Davis E, Gurbuxani S, Le Beau MM, Crispino JD.

Blood. 2008 Jan 15;111(2):767-75. Epub 2007 Sep 27.

15.

Chronic up-regulation of the SHH pathway normalizes some developmental effects of trisomy in Ts65Dn mice.

Dutka T, Hallberg D, Reeves RH.

Mech Dev. 2015 Feb;135:68-80. doi: 10.1016/j.mod.2014.11.004. Epub 2014 Dec 12.

16.

Abnormal microRNA expression in Ts65Dn hippocampus and whole blood: contributions to Down syndrome phenotypes.

Keck-Wherley J, Grover D, Bhattacharyya S, Xu X, Holman D, Lombardini ED, Verma R, Biswas R, Galdzicki Z.

Dev Neurosci. 2011;33(5):451-67. doi: 10.1159/000330884. Epub 2011 Oct 27.

17.

Trisomy for the Down syndrome 'critical region' is necessary but not sufficient for brain phenotypes of trisomic mice.

Olson LE, Roper RJ, Sengstaken CL, Peterson EA, Aquino V, Galdzicki Z, Siarey R, Pletnikov M, Moran TH, Reeves RH.

Hum Mol Genet. 2007 Apr 1;16(7):774-82. Epub 2007 Mar 5.

PMID:
17339268
18.

Neural stem cells reduce hippocampal tau and reelin accumulation in aged Ts65Dn Down syndrome mice.

Kern DS, Maclean KN, Jiang H, Synder EY, Sladek JR Jr, Bjugstad KB.

Cell Transplant. 2011;20(3):371-9. doi: 10.3727/096368910X528085. Epub 2010 Sep 27.

PMID:
20875225
19.

Cell cycle alteration and decreased cell proliferation in the hippocampal dentate gyrus and in the neocortical germinal matrix of fetuses with Down syndrome and in Ts65Dn mice.

Contestabile A, Fila T, Ceccarelli C, Bonasoni P, Bonapace L, Santini D, Bartesaghi R, Ciani E.

Hippocampus. 2007;17(8):665-78.

PMID:
17546680
20.

Comprehensive behavioral phenotyping of Ts65Dn mouse model of Down syndrome: activation of β1-adrenergic receptor by xamoterol as a potential cognitive enhancer.

Faizi M, Bader PL, Tun C, Encarnacion A, Kleschevnikov A, Belichenko P, Saw N, Priestley M, Tsien RW, Mobley WC, Shamloo M.

Neurobiol Dis. 2011 Aug;43(2):397-413. doi: 10.1016/j.nbd.2011.04.011. Epub 2011 Apr 17.

Supplemental Content

Support Center