Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

Regulation of physiologic actions of LRRK2: focus on autophagy.

Ferree A, Guillily M, Li H, Smith K, Takashima A, Squillace R, Weigele M, Collins JJ, Wolozin B.

Neurodegener Dis. 2012;10(1-4):238-41. doi: 10.1159/000332599.

2.

Redox proteomics analyses of the influence of co-expression of wild-type or mutated LRRK2 and Tau on C. elegans protein expression and oxidative modification: relevance to Parkinson disease.

Di Domenico F, Sultana R, Ferree A, Smith K, Barone E, Perluigi M, Coccia R, Pierce W, Cai J, Mancuso C, Squillace R, Wiengele M, Dalle-Donne I, Wolozin B, Butterfield DA.

Antioxid Redox Signal. 2012 Dec 1;17(11):1490-506.

3.

LRRK2-mediated neurodegeneration and dysfunction of dopaminergic neurons in a Caenorhabditis elegans model of Parkinson's disease.

Yao C, El Khoury R, Wang W, Byrd TA, Pehek EA, Thacker C, Zhu X, Smith MA, Wilson-Delfosse AL, Chen SG.

Neurobiol Dis. 2010 Oct;40(1):73-81. doi: 10.1016/j.nbd.2010.04.002.

4.

Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson's disease.

Tsika E, Nguyen AP, Dusonchet J, Colin P, Schneider BL, Moore DJ.

Neurobiol Dis. 2015 May;77:49-61. doi: 10.1016/j.nbd.2015.02.019.

PMID:
25731749
5.

Mutations in LRRK2 potentiate age-related impairment of autophagic flux.

Saha S, Ash PE, Gowda V, Liu L, Shirihai O, Wolozin B.

Mol Neurodegener. 2015 Jul 11;10:26. doi: 10.1186/s13024-015-0022-y.

6.

Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation.

Su YC, Qi X.

Hum Mol Genet. 2013 Nov 15;22(22):4545-61. doi: 10.1093/hmg/ddt301.

PMID:
23813973
7.

Kinase inhibitors arrest neurodegeneration in cell and C. elegans models of LRRK2 toxicity.

Yao C, Johnson WM, Gao Y, Wang W, Zhang J, Deak M, Alessi DR, Zhu X, Mieyal JJ, Roder H, Wilson-Delfosse AL, Chen SG.

Hum Mol Genet. 2013 Jan 15;22(2):328-44. doi: 10.1093/hmg/dds431.

8.

Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells.

Plowey ED, Cherra SJ 3rd, Liu YJ, Chu CT.

J Neurochem. 2008 May;105(3):1048-56. doi: 10.1111/j.1471-4159.2008.05217.x.

9.

Investigating convergent actions of genes linked to familial Parkinson's disease.

Wolozin B, Saha S, Guillily M, Ferree A, Riley M.

Neurodegener Dis. 2008;5(3-4):182-5. doi: 10.1159/000113697.

10.

Regulation of autophagy by LRRK2 in Caenorhabditis elegans.

Saha S, Liu-Yesucevitz L, Wolozin B.

Neurodegener Dis. 2014;13(2-3):110-3. doi: 10.1159/000355654.

11.

G2019S LRRK2 mutant fibroblasts from Parkinson's disease patients show increased sensitivity to neurotoxin 1-methyl-4-phenylpyridinium dependent of autophagy.

Yakhine-Diop SM, Bravo-San Pedro JM, Gómez-Sánchez R, Pizarro-Estrella E, Rodríguez-Arribas M, Climent V, Aiastui A, López de Munain A, Fuentes JM, González-Polo RA.

Toxicology. 2014 Oct 3;324:1-9. doi: 10.1016/j.tox.2014.07.001.

PMID:
25017139
12.

A Parkinson's disease gene regulatory network identifies the signaling protein RGS2 as a modulator of LRRK2 activity and neuronal toxicity.

Dusonchet J, Li H, Guillily M, Liu M, Stafa K, Derada Troletti C, Boon JY, Saha S, Glauser L, Mamais A, Citro A, Youmans KL, Liu L, Schneider BL, Aebischer P, Yue Z, Bandopadhyay R, Glicksman MA, Moore DJ, Collins JJ, Wolozin B.

Hum Mol Genet. 2014 Sep 15;23(18):4887-905. doi: 10.1093/hmg/ddu202.

13.

Conditional expression of Parkinson's disease-related R1441C LRRK2 in midbrain dopaminergic neurons of mice causes nuclear abnormalities without neurodegeneration.

Tsika E, Kannan M, Foo CS, Dikeman D, Glauser L, Gellhaar S, Galter D, Knott GW, Dawson TM, Dawson VL, Moore DJ.

Neurobiol Dis. 2014 Nov;71:345-58. doi: 10.1016/j.nbd.2014.08.027.

14.

Leucine-rich repeat kinase 2 induces alpha-synuclein expression via the extracellular signal-regulated kinase pathway.

Carballo-Carbajal I, Weber-Endress S, Rovelli G, Chan D, Wolozin B, Klein CL, Patenge N, Gasser T, Kahle PJ.

Cell Signal. 2010 May;22(5):821-7. doi: 10.1016/j.cellsig.2010.01.006.

15.

Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation.

Manzoni C, Mamais A, Dihanich S, McGoldrick P, Devine MJ, Zerle J, Kara E, Taanman JW, Healy DG, Marti-Masso JF, Schapira AH, Plun-Favreau H, Tooze S, Hardy J, Bandopadhyay R, Lewis PA.

Biochem Biophys Res Commun. 2013 Nov 29;441(4):862-6. doi: 10.1016/j.bbrc.2013.10.159.

16.

G2019S LRRK2 mutation causing Parkinson's disease without Lewy bodies.

Gaig C, Martí MJ, Ezquerra M, Rey MJ, Cardozo A, Tolosa E.

J Neurol Neurosurg Psychiatry. 2007 Jun;78(6):626-8.

17.

[Clinical features of LRRK2-associated Parkinson's disease].

Pchelina SN, Ivanova ON, Emel'ianov AK, Iakimovskiĭ AF.

Zh Nevrol Psikhiatr Im S S Korsakova. 2011;111(12):56-62. Russian.

PMID:
22433811
18.

Leucine-rich repeat kinase 2 (LRRK2) as a potential therapeutic target in Parkinson's disease.

Lee BD, Dawson VL, Dawson TM.

Trends Pharmacol Sci. 2012 Jul;33(7):365-73. doi: 10.1016/j.tips.2012.04.001. Review.

19.

Lack of exacerbation of neurodegeneration in a double transgenic mouse model of mutant LRRK2 and tau.

Mikhail F, Calingasan N, Parolari L, Subramanian A, Yang L, Flint Beal M.

Hum Mol Genet. 2015 Jun 15;24(12):3545-56. doi: 10.1093/hmg/ddv105.

PMID:
25804954
20.

Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2.

Ramonet D, Daher JP, Lin BM, Stafa K, Kim J, Banerjee R, Westerlund M, Pletnikova O, Glauser L, Yang L, Liu Y, Swing DA, Beal MF, Troncoso JC, McCaffery JM, Jenkins NA, Copeland NG, Galter D, Thomas B, Lee MK, Dawson TM, Dawson VL, Moore DJ.

PLoS One. 2011 Apr 6;6(4):e18568. doi: 10.1371/journal.pone.0018568.

Supplemental Content

Support Center