Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 173

1.

Dynamical analysis of yeast protein interaction network during the sake brewing process.

Mirzarezaee M, Sadeghi M, Araabi BN.

J Microbiol. 2011 Dec;49(6):965-73. doi: 10.1007/s12275-011-1194-y.

PMID:
22203560
2.

Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing.

Izawa S, Ikeda K, Miki T, Wakai Y, Inoue Y.

Appl Microbiol Biotechnol. 2010 Sep;88(1):277-82. doi: 10.1007/s00253-010-2758-1.

PMID:
20625715
3.

Disruption of ubiquitin-related genes in laboratory yeast strains enhances ethanol production during sake brewing.

Wu H, Watanabe T, Araki Y, Kitagaki H, Akao T, Takagi H, Shimoi H.

J Biosci Bioeng. 2009 Jun;107(6):636-40. doi: 10.1016/j.jbiosc.2009.01.014.

PMID:
19447341
4.

Enhancement of the initial rate of ethanol fermentation due to dysfunction of yeast stress response components Msn2p and/or Msn4p.

Watanabe D, Wu H, Noguchi C, Zhou Y, Akao T, Shimoi H.

Appl Environ Microbiol. 2011 Feb;77(3):934-41. doi: 10.1128/AEM.01869-10.

5.

Global gene expression analysis of yeast cells during sake brewing.

Wu H, Zheng X, Araki Y, Sahara H, Takagi H, Shimoi H.

Appl Environ Microbiol. 2006 Nov;72(11):7353-8.

6.

Characterization of Rat8 localization and mRNA export in Saccharomyces cerevisiae during the brewing of Japanese sake.

Izawa S, Takemura R, Ikeda K, Fukuda K, Wakai Y, Inoue Y.

Appl Microbiol Biotechnol. 2005 Nov;69(1):86-91.

PMID:
15803312
7.

Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast.

Watanabe D, Nogami S, Ohya Y, Kanno Y, Zhou Y, Akao T, Shimoi H.

J Biosci Bioeng. 2011 Dec;112(6):577-82. doi: 10.1016/j.jbiosc.2011.08.010.

PMID:
21906996
8.

QTL mapping of sake brewing characteristics of yeast.

Katou T, Namise M, Kitagaki H, Akao T, Shimoi H.

J Biosci Bioeng. 2009 Apr;107(4):383-93. doi: 10.1016/j.jbiosc.2008.12.014.

PMID:
19332297
9.

Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7.

Katou T, Kitagaki H, Akao T, Shimoi H.

Yeast. 2008 Nov;25(11):799-807. doi: 10.1002/yea.1634.

10.

Transcriptome analysis identifies genes involved in ethanol response of Saccharomyces cerevisiae in Agave tequilana juice.

Ramirez-Córdova J, Drnevich J, Madrigal-Pulido JA, Arrizon J, Allen K, Martínez-Velázquez M, Alvarez-Maya I.

Antonie Van Leeuwenhoek. 2012 Aug;102(2):247-55. doi: 10.1007/s10482-012-9733-z.

PMID:
22535436
11.

[Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].

Qu N, He XP, Guo XN, Liu N, Zhang BR.

Wei Sheng Wu Xue Bao. 2006 Feb;46(1):38-42. Chinese.

PMID:
16579462
12.

Mitochondrial-morphology-targeted breeding of industrial yeast strains for alcohol fermentation.

Kitagaki H.

Biotechnol Appl Biochem. 2009 May 29;53(Pt 3):145-53. doi: 10.1042/BA20090032. Review.

PMID:
19476438
13.

Dynamic hubs show competitive and static hubs non-competitive regulation of their interaction partners.

Goel A, Wilkins MR.

PLoS One. 2012;7(10):e48209. doi: 10.1371/journal.pone.0048209.

14.

Asr1, an alcohol-responsive factor of Saccharomyces cerevisiae, is dispensable for alcoholic fermentation.

Izawa S, Ikeda K, Kita T, Inoue Y.

Appl Microbiol Biotechnol. 2006 Sep;72(3):560-5.

PMID:
16391921
15.

Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation.

Urbanczyk H, Noguchi C, Wu H, Watanabe D, Akao T, Takagi H, Shimoi H.

J Biosci Bioeng. 2011 Jul;112(1):44-8. doi: 10.1016/j.jbiosc.2011.03.001.

PMID:
21459038
16.

Rim15p-mediated regulation of sucrose utilization during molasses fermentation using Saccharomyces cerevisiae strain PE-2.

Inai T, Watanabe D, Zhou Y, Fukada R, Akao T, Shima J, Takagi H, Shimoi H.

J Biosci Bioeng. 2013 Nov;116(5):591-4. doi: 10.1016/j.jbiosc.2013.05.015.

PMID:
23757382
17.

FPG1, a gene involved in foam formation in Saccharomyces cerevisiae.

Blasco L, Veiga-Crespo P, Villa TG.

Yeast. 2011 Jun;28(6):437-51. doi: 10.1002/yea.1849.

18.

Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae.

Watanabe D, Zhou Y, Hirata A, Sugimoto Y, Takagi K, Akao T, Ohya Y, Takagi H, Shimoi H.

Appl Environ Microbiol. 2015 Oct 23;82(1):340-51. doi: 10.1128/AEM.02977-15.

19.

Genome-wide expression profile of sake brewing yeast under shaking and static conditions.

Shobayashi M, Ukena E, Fujii T, Iefuji H.

Biosci Biotechnol Biochem. 2007 Feb;71(2):323-35.

20.

Involvement of methionine salvage pathway genes of Saccharomyces cerevisiae in the production of precursor compounds of dimethyl trisulfide (DMTS).

Wakabayashi K, Isogai A, Watanabe D, Fujita A, Sudo S.

J Biosci Bioeng. 2013 Oct;116(4):475-9. doi: 10.1016/j.jbiosc.2013.04.016.

PMID:
23773701
Items per page

Supplemental Content

Support Center