Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 146

1.

Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution.

Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MG.

Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):E135-43. doi: 10.1073/pnas.1107547108. Epub 2011 Dec 12.

2.

Nonlinear Structured Illumination Using a Fluorescent Protein Activating at the Readout Wavelength.

Lu-Walther HW, Hou W, Kielhorn M, Arai Y, Nagai T, Kessels MM, Qualmann B, Heintzmann R.

PLoS One. 2016 Oct 26;11(10):e0165148. doi: 10.1371/journal.pone.0165148. eCollection 2016.

3.

Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution.

Gustafsson MG.

Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13081-6. Epub 2005 Sep 2.

4.

Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins.

Hofmann M, Eggeling C, Jakobs S, Hell SW.

Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17565-9. Epub 2005 Nov 28.

5.

Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy.

Zhang X, Zhang M, Li D, He W, Peng J, Betzig E, Xu P.

Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10364-9. doi: 10.1073/pnas.1611038113. Epub 2016 Aug 25.

6.

Seeing more with structured illumination microscopy.

Fiolka R.

Methods Cell Biol. 2014;123:295-313. doi: 10.1016/B978-0-12-420138-5.00016-1.

PMID:
24974034
7.

Smart fluorescent proteins: innovation for barrier-free superresolution imaging in living cells.

Tiwari DK, Nagai T.

Dev Growth Differ. 2013 May;55(4):491-507. doi: 10.1111/dgd.12064. Epub 2013 May 2. Review.

PMID:
23635320
8.

Two-photon-like microscopy with orders-of-magnitude lower illumination intensity via two-step fluorescence.

Ingaramo M, York AG, Andrade EJ, Rainey K, Patterson GH.

Nat Commun. 2015 Sep 3;6:8184. doi: 10.1038/ncomms9184.

9.

The Role of Probe Photophysics in Localization-Based Superresolution Microscopy.

Pennacchietti F, Gould TJ, Hess ST.

Biophys J. 2017 Nov 7;113(9):2037-2054. doi: 10.1016/j.bpj.2017.08.054.

10.
11.

Structured illumination microscopy reveals focal adhesions are composed of linear subunits.

Hu S, Tee YH, Kabla A, Zaidel-Bar R, Bershadsky A, Hersen P.

Cytoskeleton (Hoboken). 2015 May;72(5):235-45. doi: 10.1002/cm.21223.

PMID:
26012525
12.
13.

Nonlinear structured illumination microscopy by surface plasmon enhanced stimulated emission depletion.

Zhang H, Zhao M, Peng L.

Opt Express. 2011 Nov 21;19(24):24783-94. doi: 10.1364/OE.19.024783.

PMID:
22109506
14.

Structured illumination superresolution imaging of the cytoskeleton.

Engel U.

Methods Cell Biol. 2014;123:315-33. doi: 10.1016/B978-0-12-420138-5.00017-3.

PMID:
24974035
15.

Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media.

Baddeley D, Jayasinghe ID, Cremer C, Cannell MB, Soeller C.

Biophys J. 2009 Jan;96(2):L22-4. doi: 10.1016/j.bpj.2008.11.002.

16.

The limitations of nonlinear fluorescence effect in super resolution saturated structured illumination microscopy system.

Gur A, Zalevsky Z, Micó V, García J, Fixler D.

J Fluoresc. 2011 May;21(3):1075-82. doi: 10.1007/s10895-010-0780-4. Epub 2010 Dec 30.

PMID:
21191638
17.

Isotropic image in structured illumination microscopy patterned with a spatial light modulator.

Chang BJ, Chou LJ, Chang YC, Chiang SY.

Opt Express. 2009 Aug 17;17(17):14710-21.

PMID:
19687949
18.

3D fluorescence anisotropy imaging using selective plane illumination microscopy.

Hedde PN, Ranjit S, Gratton E.

Opt Express. 2015 Aug 24;23(17):22308-17. doi: 10.1364/OE.23.022308.

19.

Saturated patterned excitation microscopy--a concept for optical resolution improvement.

Heintzmann R, Jovin TM, Cremer C.

J Opt Soc Am A Opt Image Sci Vis. 2002 Aug;19(8):1599-609.

PMID:
12152701
20.

Light exposure and cell viability in fluorescence microscopy.

Schneckenburger H, Weber P, Wagner M, Schickinger S, Richter V, Bruns T, Strauss WS, Wittig R.

J Microsc. 2012 Mar;245(3):311-8. doi: 10.1111/j.1365-2818.2011.03576.x. Epub 2011 Nov 29.

Supplemental Content

Support Center