Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 237

1.

Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica.

Morin N, Cescut J, Beopoulos A, Lelandais G, Le Berre V, Uribelarrea JL, Molina-Jouve C, Nicaud JM.

PLoS One. 2011;6(11):e27966. doi: 10.1371/journal.pone.0027966. Epub 2011 Nov 22.

2.

High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production.

Back A, Rossignol T, Krier F, Nicaud JM, Dhulster P.

Microb Cell Fact. 2016 Aug 23;15(1):147. doi: 10.1186/s12934-016-0546-z.

3.

Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica.

Seip J, Jackson R, He H, Zhu Q, Hong SP.

Appl Environ Microbiol. 2013 Dec;79(23):7360-70. doi: 10.1128/AEM.02079-13. Epub 2013 Sep 20.

4.

A survey of yeast from the Yarrowia clade for lipid production in dilute acid pretreated lignocellulosic biomass hydrolysate.

Quarterman J, Slininger PJ, Kurtzman CP, Thompson SR, Dien BS.

Appl Microbiol Biotechnol. 2017 Apr;101(8):3319-3334. doi: 10.1007/s00253-016-8062-y. Epub 2016 Dec 23.

PMID:
28012044
5.

Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica.

Silverman AM, Qiao K, Xu P, Stephanopoulos G.

Appl Microbiol Biotechnol. 2016 Apr;100(8):3781-98. doi: 10.1007/s00253-016-7376-0. Epub 2016 Feb 26.

PMID:
26915993
6.

Optimization of lipid production with a genome-scale model of Yarrowia lipolytica.

Kavšček M, Bhutada G, Madl T, Natter K.

BMC Syst Biol. 2015 Oct 26;9:72. doi: 10.1186/s12918-015-0217-4.

7.

A proteomic and transcriptomic view of amino acids catabolism in the yeast Yarrowia lipolytica.

Mansour S, Bailly J, Delettre J, Bonnarme P.

Proteomics. 2009 Oct;9(20):4714-25. doi: 10.1002/pmic.200900161.

PMID:
19764064
8.

D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica.

Ochoa-Estopier A, Guillouet SE.

J Biotechnol. 2014 Jan 20;170:35-41. doi: 10.1016/j.jbiotec.2013.11.008. Epub 2013 Dec 4.

PMID:
24316225
9.

Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation.

Beopoulos A, Chardot T, Nicaud JM.

Biochimie. 2009 Jun;91(6):692-6. doi: 10.1016/j.biochi.2009.02.004. Epub 2009 Feb 25. Review.

PMID:
19248816
10.

Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures.

Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G.

Appl Microbiol Biotechnol. 2002 Mar;58(3):308-12. Epub 2001 Dec 11.

PMID:
11935181
11.

Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109.

Wang ZP, Xu HM, Wang GY, Chi Z, Chi ZM.

Biochim Biophys Acta. 2013 Apr;1831(4):675-82. doi: 10.1016/j.bbalip.2012.12.010. Epub 2012 Dec 26.

PMID:
23274237
12.

Simultaneous production of citric acid and invertase by Yarrowia lipolytica SUC+ transformants.

Lazar Z, Walczak E, Robak M.

Bioresour Technol. 2011 Jul;102(13):6982-9. doi: 10.1016/j.biortech.2011.04.032. Epub 2011 Apr 15.

PMID:
21549590
13.

Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP:citrate lyase from Mus musculus.

Zhang H, Zhang L, Chen H, Chen YQ, Chen W, Song Y, Ratledge C.

J Biotechnol. 2014 Dec 20;192 Pt A:78-84.

PMID:
25450640
14.

Analysis of ATP-citrate lyase and malic enzyme mutants of Yarrowia lipolytica points out the importance of mannitol metabolism in fatty acid synthesis.

Dulermo T, Lazar Z, Dulermo R, Rakicka M, Haddouche R, Nicaud JM.

Biochim Biophys Acta. 2015 Sep;1851(9):1107-17. doi: 10.1016/j.bbalip.2015.04.007. Epub 2015 May 8.

15.

Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures.

Makri A, Fakas S, Aggelis G.

Bioresour Technol. 2010 Apr;101(7):2351-8. doi: 10.1016/j.biortech.2009.11.024. Epub 2009 Dec 4.

PMID:
19962884
16.

Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin.

Liu XY, Chi Z, Liu GL, Madzak C, Chi ZM.

Mar Biotechnol (NY). 2013 Feb;15(1):26-36. doi: 10.1007/s10126-012-9452-5. Epub 2012 May 6.

PMID:
22562483
17.

Multi-omics analysis reveals regulators of the response to nitrogen limitation in Yarrowia lipolytica.

Pomraning KR, Kim YM, Nicora CD, Chu RK, Bredeweg EL, Purvine SO, Hu D, Metz TO, Baker SE.

BMC Genomics. 2016 Feb 25;17:138. doi: 10.1186/s12864-016-2471-2.

18.

A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica.

Loira N, Dulermo T, Nicaud JM, Sherman DJ.

BMC Syst Biol. 2012 May 4;6:35. doi: 10.1186/1752-0509-6-35.

19.

Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica.

Dulermo T, Nicaud JM.

Metab Eng. 2011 Sep;13(5):482-91. doi: 10.1016/j.ymben.2011.05.002. Epub 2011 May 23.

PMID:
21620992
20.

Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109.

Wang GY, Zhang Y, Chi Z, Liu GL, Wang ZP, Chi ZM.

Appl Microbiol Biotechnol. 2015 Feb;99(4):1637-45. doi: 10.1007/s00253-014-6236-z. Epub 2014 Nov 27.

PMID:
25427679

Supplemental Content

Support Center