Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

A screening for essential cell growth-related genes involved in arsenite toxicity in Saccharomyces cerevisiae.

Takahashi T, Satake S, Hirose K, Hwang GW, Naganuma A.

J Toxicol Sci. 2011;36(6):859-61.

2.

Overexpression of FAP7, MIG3, TMA19, or YLR392c confers resistance to arsenite on Saccharomyces cerevisiae.

Takahashi T, Yano T, Zhu J, Hwang GW, Naganuma A.

J Toxicol Sci. 2010 Dec;35(6):945-6.

3.

Identification and characterization of a family of secretion-related small GTPase-encoding genes from the filamentous fungus Aspergillus niger: a putative SEC4 homologue is not essential for growth.

Punt PJ, Seiboth B, Weenink XO, van Zeijl C, Lenders M, Konetschny C, Ram AF, Montijn R, Kubicek CP, van den Hondel CA.

Mol Microbiol. 2001 Jul;41(2):513-25.

4.

A genome-wide screen in Saccharomyces cerevisiae reveals pathways affected by arsenic toxicity.

Zhou X, Arita A, Ellen TP, Liu X, Bai J, Rooney JP, Kurtz AD, Klein CB, Dai W, Begley TJ, Costa M.

Genomics. 2009 Nov;94(5):294-307. doi: 10.1016/j.ygeno.2009.07.003. Epub 2009 Jul 22.

5.
6.

Use of the TRP1 auxotrophic marker for gene disruption and phenotypic analysis in yeast: a note of warning.

González A, Larroy C, Biosca JA, Ariño J.

FEMS Yeast Res. 2008 Feb;8(1):2-5. Epub 2007 Sep 24.

7.

Screening for novel essential genes of Saccharomyces cerevisiae involved in protein secretion.

Davydenko SG, Juselius JK, Munder T, Bogengruber E, Jäntti J, Keränen S.

Yeast. 2004 Apr 30;21(6):463-71.

8.

The synthetic genetic interaction spectrum of essential genes.

Davierwala AP, Haynes J, Li Z, Brost RL, Robinson MD, Yu L, Mnaimneh S, Ding H, Zhu H, Chen Y, Cheng X, Brown GW, Boone C, Andrews BJ, Hughes TR.

Nat Genet. 2005 Oct;37(10):1147-52. Epub 2005 Sep 11.

10.

A novel yeast genomic DNA library on a geneticin-resistance vector.

Jauert PA, Jensen LE, Kirkpatrick DT.

Yeast. 2005 Jun;22(8):653-7.

11.

Nob1p, a new essential protein, associates with the 26S proteasome of growing saccharomyces cerevisiae cells.

Tone Y, Tanahashi N, Tanaka K, Fujimuro M, Yokosawa H, Toh-e A.

Gene. 2000 Feb 8;243(1-2):37-45.

PMID:
10675611
12.

Pyridoxine biosynthesis in yeast: participation of ribose 5-phosphate ketol-isomerase.

Kondo H, Nakamura Y, Dong YX, Nikawa J, Sueda S.

Biochem J. 2004 Apr 1;379(Pt 1):65-70.

13.

Genetic determinants of mitochondrial response to arsenic in yeast Saccharomyces cerevisiae.

Vujcic M, Shroff M, Singh KK.

Cancer Res. 2007 Oct 15;67(20):9740-9.

14.

Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1.

Schawalder SB, Kabani M, Howald I, Choudhury U, Werner M, Shore D.

Nature. 2004 Dec 23;432(7020):1058-61.

PMID:
15616569
15.

Genetic interaction between ribosome biogenesis and inositol polyphosphate metabolism in Saccharomyces cerevisiae.

Horigome C, Ikeda R, Okada T, Takenami K, Mizuta K.

Biosci Biotechnol Biochem. 2009 Feb;73(2):443-6. Epub 2009 Feb 7.

16.
17.

Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae.

Thorsen M, Perrone GG, Kristiansson E, Traini M, Ye T, Dawes IW, Nerman O, Tamás MJ.

BMC Genomics. 2009 Mar 12;10:105. doi: 10.1186/1471-2164-10-105.

18.

New constructs and strategies for efficient PCR-based gene manipulations in yeast.

Puig O, Rutz B, Luukkonen BG, Kandels-Lewis S, Bragado-Nilsson E, Séraphin B.

Yeast. 1998 Sep 15;14(12):1139-46.

19.

Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.

Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT.

FEMS Yeast Res. 2005 Feb;5(4-5):399-409.

Supplemental Content

Support Center