Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 186

1.

A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues.

Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, Zandstra PW, Epstein JA, Margulies KB, Chen CS.

Tissue Eng Part A. 2012 May;18(9-10):910-9. doi: 10.1089/ten.TEA.2011.0341. Epub 2012 Jan 4.

2.

Microfabrication of a platform to measure and manipulate the mechanics of engineered microtissues.

Ramade A, Legant WR, Picart C, Chen CS, Boudou T.

Methods Cell Biol. 2014;121:191-211. doi: 10.1016/B978-0-12-800281-0.00013-0.

PMID:
24560511
3.

Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues.

Legant WR, Pathak A, Yang MT, Deshpande VS, McMeeking RM, Chen CS.

Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10097-102. doi: 10.1073/pnas.0900174106. Epub 2009 Jun 16.

4.

Decoupling cell and matrix mechanics in engineered microtissues using magnetically actuated microcantilevers.

Zhao R, Boudou T, Wang WG, Chen CS, Reich DH.

Adv Mater. 2013 Mar 25;25(12):1699-705. doi: 10.1002/adma.201203585. Epub 2013 Jan 28.

5.

Controlling the structural and functional anisotropy of engineered cardiac tissues.

Bian W, Jackman CP, Bursac N.

Biofabrication. 2014 Jun;6(2):024109-24109. doi: 10.1088/1758-5082/6/2/024109. Epub 2014 Apr 10.

6.

Controlling the contractile strength of engineered cardiac muscle by hierarchal tissue architecture.

Feinberg AW, Alford PW, Jin H, Ripplinger CM, Werdich AA, Sheehy SP, Grosberg A, Parker KK.

Biomaterials. 2012 Aug;33(23):5732-41. doi: 10.1016/j.biomaterials.2012.04.043. Epub 2012 May 15.

7.

Toward improved myocardial maturity in an organ-on-chip platform with immature cardiac myocytes.

Sheehy SP, Grosberg A, Qin P, Behm DJ, Ferrier JP, Eagleson MA, Nesmith AP, Krull D, Falls JG, Campbell PH, McCain ML, Willette RN, Hu E, Parker KK.

Exp Biol Med (Maywood). 2017 Nov;242(17):1643-1656. doi: 10.1177/1535370217701006. Epub 2017 Mar 26.

PMID:
28343439
8.

Force characteristics of in vivo tissue-engineered myocardial constructs using varying cell seeding densities.

Birla R, Dhawan V, Huang YC, Lytle I, Tiranathanagul K, Brown D.

Artif Organs. 2008 Sep;32(9):684-91. doi: 10.1111/j.1525-1594.2008.00591.x. Epub 2008 Jul 30.

9.

Engineering of oriented myocardium on three-dimensional micropatterned collagen-chitosan hydrogel.

Chiu LL, Janic K, Radisic M.

Int J Artif Organs. 2012 Apr 30;35(4):237-50. doi: 10.5301/ijao.5000084. Epub 2012 Apr 13.

PMID:
22505198
10.

I-Wire Heart-on-a-Chip I: Three-dimensional cardiac tissue constructs for physiology and pharmacology.

Sidorov VY, Samson PC, Sidorova TN, Davidson JM, Lim CC, Wikswo JP.

Acta Biomater. 2017 Jan 15;48:68-78. doi: 10.1016/j.actbio.2016.11.009. Epub 2016 Nov 4.

11.

Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs.

Morgan KY, Black LD 3rd.

Tissue Eng Part A. 2014 Jun;20(11-12):1654-67. doi: 10.1089/ten.TEA.2013.0355. Epub 2014 Apr 7.

12.

Mechanical Stress Conditioning and Electrical Stimulation Promote Contractility and Force Maturation of Induced Pluripotent Stem Cell-Derived Human Cardiac Tissue.

Ruan JL, Tulloch NL, Razumova MV, Saiget M, Muskheli V, Pabon L, Reinecke H, Regnier M, Murry CE.

Circulation. 2016 Nov 15;134(20):1557-1567. Epub 2016 Oct 13.

13.

Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel.

Tao ZW, Mohamed M, Hogan M, Gutierrez L, Birla RK.

J Tissue Eng Regen Med. 2017 Jan;11(1):153-163. doi: 10.1002/term.1895. Epub 2014 Apr 28.

14.

I-Wire Heart-on-a-Chip II: Biomechanical analysis of contractile, three-dimensional cardiomyocyte tissue constructs.

Schroer AK, Shotwell MS, Sidorov VY, Wikswo JP, Merryman WD.

Acta Biomater. 2017 Jan 15;48:79-87. doi: 10.1016/j.actbio.2016.11.010. Epub 2016 Nov 3.

15.

Encapsulation of cardiomyocytes in a fibrin hydrogel for cardiac tissue engineering.

Yuan Ye K, Sullivan KE, Black LD.

J Vis Exp. 2011 Sep 19;(55). pii: 3251. doi: 10.3791/3251.

16.

Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation.

Godier-Furnémont AF, Tiburcy M, Wagner E, Dewenter M, Lämmle S, El-Armouche A, Lehnart SE, Vunjak-Novakovic G, Zimmermann WH.

Biomaterials. 2015 Aug;60:82-91. doi: 10.1016/j.biomaterials.2015.03.055. Epub 2015 May 15.

17.

The influence of matrix (an)isotropy on cardiomyocyte contraction in engineered cardiac microtissues.

van Spreeuwel AC, Bax NA, Bastiaens AJ, Foolen J, Loerakker S, Borochin M, van der Schaft DW, Chen CS, Baaijens FP, Bouten CV.

Integr Biol (Camb). 2014 Apr;6(4):422-9. doi: 10.1039/c3ib40219c. Epub 2014 Feb 18.

PMID:
24549279
18.

Biomimetic scaffold combined with electrical stimulation and growth factor promotes tissue engineered cardiac development.

Park H, Larson BL, Kolewe ME, Vunjak-Novakovic G, Freed LE.

Exp Cell Res. 2014 Feb 15;321(2):297-306. doi: 10.1016/j.yexcr.2013.11.005. Epub 2013 Nov 14.

19.

Engineered cardiac tissues for in vitro assessment of contractile function and repair mechanisms.

Kim DE, Lee EJ, Martens TP, Kara R, Chaudhry HW, Itescu S, Costa KD.

Conf Proc IEEE Eng Med Biol Soc. 2006;1:849-52.

PMID:
17946863
20.

Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation.

Hirt MN, Boeddinghaus J, Mitchell A, Schaaf S, Börnchen C, Müller C, Schulz H, Hubner N, Stenzig J, Stoehr A, Neuber C, Eder A, Luther PK, Hansen A, Eschenhagen T.

J Mol Cell Cardiol. 2014 Sep;74:151-61. doi: 10.1016/j.yjmcc.2014.05.009. Epub 2014 May 19.

Supplemental Content

Support Center