Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 216

1.

Model for long QT syndrome type 2 using human iPS cells demonstrates arrhythmogenic characteristics in cell culture.

Lahti AL, Kujala VJ, Chapman H, Koivisto AP, Pekkanen-Mattila M, Kerkelä E, Hyttinen J, Kontula K, Swan H, Conklin BR, Yamanaka S, Silvennoinen O, Aalto-Setälä K.

Dis Model Mech. 2012 Mar;5(2):220-30. doi: 10.1242/dmm.008409. Epub 2011 Nov 3.

2.

Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation.

Matsa E, Rajamohan D, Dick E, Young L, Mellor I, Staniforth A, Denning C.

Eur Heart J. 2011 Apr;32(8):952-62. doi: 10.1093/eurheartj/ehr073. Epub 2011 Mar 2.

3.

Modelling the long QT syndrome with induced pluripotent stem cells.

Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L.

Nature. 2011 Mar 10;471(7337):225-9. doi: 10.1038/nature09747. Epub 2011 Jan 16.

PMID:
21240260
4.

Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes.

Matsa E, Dixon JE, Medway C, Georgiou O, Patel MJ, Morgan K, Kemp PJ, Staniforth A, Mellor I, Denning C.

Eur Heart J. 2014 Apr;35(16):1078-87. doi: 10.1093/eurheartj/eht067. Epub 2013 Mar 6.

5.

Toward Personalized Medicine: Using Cardiomyocytes Differentiated From Urine-Derived Pluripotent Stem Cells to Recapitulate Electrophysiological Characteristics of Type 2 Long QT Syndrome.

Jouni M, Si-Tayeb K, Es-Salah-Lamoureux Z, Latypova X, Champon B, Caillaud A, Rungoat A, Charpentier F, Loussouarn G, Baró I, Zibara K, Lemarchand P, Gaborit N.

J Am Heart Assoc. 2015 Sep 1;4(9):e002159. doi: 10.1161/JAHA.115.002159.

6.

Properties of WT and mutant hERG K(+) channels expressed in neonatal mouse cardiomyocytes.

Lin EC, Holzem KM, Anson BD, Moungey BM, Balijepalli SY, Tester DJ, Ackerman MJ, Delisle BP, Balijepalli RC, January CT.

Am J Physiol Heart Circ Physiol. 2010 Jun;298(6):H1842-9. doi: 10.1152/ajpheart.01236.2009. Epub 2010 Apr 2.

7.

Isogenic human pluripotent stem cell pairs reveal the role of a KCNH2 mutation in long-QT syndrome.

Bellin M, Casini S, Davis RP, D'Aniello C, Haas J, Ward-van Oostwaard D, Tertoolen LG, Jung CB, Elliott DA, Welling A, Laugwitz KL, Moretti A, Mummery CL.

EMBO J. 2013 Dec 11;32(24):3161-75. doi: 10.1038/emboj.2013.240. Epub 2013 Nov 8.

8.

Differential conditions for early after-depolarizations and triggered activity in cardiomyocytes derived from transgenic LQT1 and LQT2 rabbits.

Liu GX, Choi BR, Ziv O, Li W, de Lange E, Qu Z, Koren G.

J Physiol. 2012 Mar 1;590(5):1171-80. doi: 10.1113/jphysiol.2011.218164. Epub 2011 Dec 19.

9.

Cardiomyocytes obtained from induced pluripotent stem cells with long-QT syndrome 3 recapitulate typical disease-specific features in vitro.

Malan D, Friedrichs S, Fleischmann BK, Sasse P.

Circ Res. 2011 Sep 30;109(8):841-7. doi: 10.1161/CIRCRESAHA.111.243139. Epub 2011 Jul 28.

10.

Hyperphosphorylation of RyRs underlies triggered activity in transgenic rabbit model of LQT2 syndrome.

Terentyev D, Rees CM, Li W, Cooper LL, Jindal HK, Peng X, Lu Y, Terentyeva R, Odening KE, Daley J, Bist K, Choi BR, Karma A, Koren G.

Circ Res. 2014 Nov 7;115(11):919-28. doi: 10.1161/CIRCRESAHA.115.305146. Epub 2014 Sep 23.

11.

Spatial correlation of action potential duration and diastolic dysfunction in transgenic and drug-induced LQT2 rabbits.

Odening KE, Jung BA, Lang CN, Cabrera Lozoya R, Ziupa D, Menza M, Relan J, Franke G, Perez Feliz S, Koren G, Zehender M, Bode C, Brunner M, Sermesant M, Föll D.

Heart Rhythm. 2013 Oct;10(10):1533-41. doi: 10.1016/j.hrthm.2013.07.038. Epub 2013 Jul 26.

PMID:
23892340
12.

Novel characteristics of a trafficking-defective G572R-hERG channel linked to hereditary long QT syndrome.

Lian J, Huang N, Zhou J, Ge S, Huang X, Huo J, Liu L, Xu W, Zhang S, Yang X, Zhou J, Huang C.

Can J Cardiol. 2010 Oct;26(8):417-22.

13.

Cardiac Mechanical Alterations and Genotype Specific Differences in Subjects With Long QT Syndrome.

Leren IS, Hasselberg NE, Saberniak J, Håland TF, Kongsgård E, Smiseth OA, Edvardsen T, Haugaa KH.

JACC Cardiovasc Imaging. 2015 May;8(5):501-10. doi: 10.1016/j.jcmg.2014.12.023. Epub 2015 Apr 15.

14.

Re-trafficking of hERG reverses long QT syndrome 2 phenotype in human iPS-derived cardiomyocytes.

Mehta A, Sequiera GL, Ramachandra CJ, Sudibyo Y, Chung Y, Sheng J, Wong KY, Tan TH, Wong P, Liew R, Shim W.

Cardiovasc Res. 2014 Jun 1;102(3):497-506. doi: 10.1093/cvr/cvu060. Epub 2014 Mar 12.

PMID:
24623279
15.

Calcium transients closely reflect prolonged action potentials in iPSC models of inherited cardiac arrhythmia.

Spencer CI, Baba S, Nakamura K, Hua EA, Sears MA, Fu CC, Zhang J, Balijepalli S, Tomoda K, Hayashi Y, Lizarraga P, Wojciak J, Scheinman MM, Aalto-Setälä K, Makielski JC, January CT, Healy KE, Kamp TJ, Yamanaka S, Conklin BR.

Stem Cell Reports. 2014 Aug 12;3(2):269-81. doi: 10.1016/j.stemcr.2014.06.003. Epub 2014 Jul 4.

16.

Molecular biology of the long QT syndrome: impact on management.

Priori SG, Napolitano C, Paganini V, Cantù F, Schwartz PJ.

Pacing Clin Electrophysiol. 1997 Aug;20(8 Pt 2):2052-7. Review.

PMID:
9272507
17.
18.

C-terminal HERG (LQT2) mutations disrupt IKr channel regulation through 14-3-3epsilon.

Choe CU, Schulze-Bahr E, Neu A, Xu J, Zhu ZI, Sauter K, Bähring R, Priori S, Guicheney P, Mönnig G, Neapolitano C, Heidemann J, Clancy CE, Pongs O, Isbrandt D.

Hum Mol Genet. 2006 Oct 1;15(19):2888-902. Epub 2006 Aug 21.

PMID:
16923798
19.

Mechanisms of zolpidem-induced long QT syndrome: acute inhibition of recombinant hERG K(+) channels and action potential prolongation in human cardiomyocytes derived from induced pluripotent stem cells.

Jehle J, Ficker E, Wan X, Deschenes I, Kisselbach J, Wiedmann F, Staudacher I, Schmidt C, Schweizer PA, Becker R, Katus HA, Thomas D.

Br J Pharmacol. 2013 Mar;168(5):1215-29. doi: 10.1111/bph.12002.

20.

Mechanistic basis for type 2 long QT syndrome caused by KCNH2 mutations that disrupt conserved arginine residues in the voltage sensor.

McBride CM, Smith AM, Smith JL, Reloj AR, Velasco EJ, Powell J, Elayi CS, Bartos DC, Burgess DE, Delisle BP.

J Membr Biol. 2013 May;246(5):355-64. doi: 10.1007/s00232-013-9539-6. Epub 2013 Apr 2.

Supplemental Content

Support Center