Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 104

1.

A systems biology approach reveals the role of a novel methyltransferase in response to chemical stress and lipid homeostasis.

Lissina E, Young B, Urbanus ML, Guan XL, Lowenson J, Hoon S, Baryshnikova A, Riezman I, Michaut M, Riezman H, Cowen LE, Wenk MR, Clarke SG, Giaever G, Nislow C.

PLoS Genet. 2011 Oct;7(10):e1002332. doi: 10.1371/journal.pgen.1002332. Epub 2011 Oct 20.

2.

A novel small molecule methyltransferase is important for virulence in Candida albicans.

Lissina E, Weiss D, Young B, Rella A, Cheung-Ong K, Del Poeta M, Clarke SG, Giaever G, Nislow C.

ACS Chem Biol. 2013 Dec 20;8(12):2785-93. doi: 10.1021/cb400607h. Epub 2013 Oct 16.

3.

Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis.

da Silveira Dos Santos AX, Riezman I, Aguilera-Romero MA, David F, Piccolis M, Loewith R, Schaad O, Riezman H.

Mol Biol Cell. 2014 Oct 15;25(20):3234-46. doi: 10.1091/mbc.E14-03-0851. Epub 2014 Aug 20.

4.

Cantharidin-based small molecules as potential therapeutic agents.

Puerto Galvis CE, Vargas Méndez LY, Kouznetsov VV.

Chem Biol Drug Des. 2013 Nov;82(5):477-99. doi: 10.1111/cbdd.12180. Epub 2013 Aug 9. Review.

PMID:
23809227
5.

Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches.

Borklu Yucel E, Ulgen KO.

Mol Biosyst. 2013 Nov;9(11):2914-31. doi: 10.1039/c3mb70248k.

PMID:
24056632
6.

Distinct signaling roles of ceramide species in yeast revealed through systematic perturbation and systems biology analyses.

Montefusco DJ, Chen L, Matmati N, Lu S, Newcomb B, Cooper GF, Hannun YA, Lu X.

Sci Signal. 2013 Oct 29;6(299):rs14. doi: 10.1126/scisignal.2004515.

7.

Revealing a signaling role of phytosphingosine-1-phosphate in yeast.

Cowart LA, Shotwell M, Worley ML, Richards AJ, Montefusco DJ, Hannun YA, Lu X.

Mol Syst Biol. 2010;6:349. doi: 10.1038/msb.2010.3. Epub 2010 Feb 16.

9.

Chemogenetic E-MAP in Saccharomyces cerevisiae for Identification of Membrane Transporters Operating Lipid Flip Flop.

Vazquez HM, Vionnet C, Roubaty C, Mallela SK, Schneiter R, Conzelmann A.

PLoS Genet. 2016 Jul 27;12(7):e1006160. doi: 10.1371/journal.pgen.1006160. eCollection 2016 Jul.

10.

Effects of phosphoprotein phosphatase inhibitors (phenylarsine oxide and cantharidin) on Tetrahymena.

Kovács P, Pintér M.

Cell Biochem Funct. 2001 Sep;19(3):197-205.

PMID:
11494309
11.

Functions and metabolism of sphingolipids in Saccharomyces cerevisiae.

Dickson RC, Sumanasekera C, Lester RL.

Prog Lipid Res. 2006 Nov;45(6):447-65. Epub 2006 Apr 21. Review.

PMID:
16730802
12.

Protein phosphatase methyltransferase 1 (Ppm1p) is the sole activity responsible for modification of the major forms of protein phosphatase 2A in yeast.

Kalhor HR, Luk K, Ramos A, Zobel-Thropp P, Clarke S.

Arch Biochem Biophys. 2001 Nov 15;395(2):239-45.

PMID:
11697862
13.

Novel N-terminal and Lysine Methyltransferases That Target Translation Elongation Factor 1A in Yeast and Human.

Hamey JJ, Winter DL, Yagoub D, Overall CM, Hart-Smith G, Wilkins MR.

Mol Cell Proteomics. 2016 Jan;15(1):164-76. doi: 10.1074/mcp.M115.052449. Epub 2015 Nov 6.

14.

New phenotypes generated by the G57R mutation of BUD23 in Saccharomyces cerevisiae.

Lin JL, Yu HC, Chao JL, Wang C, Cheng MY.

Yeast. 2012 Dec;29(12):537-46. doi: 10.1002/yea.2934. Epub 2012 Nov 12.

15.

Quantitative analysis of proteome and lipidome dynamics reveals functional regulation of global lipid metabolism.

Casanovas A, Sprenger RR, Tarasov K, Ruckerbauer DE, Hannibal-Bach HK, Zanghellini J, Jensen ON, Ejsing CS.

Chem Biol. 2015 Mar 19;22(3):412-25. doi: 10.1016/j.chembiol.2015.02.007.

16.

Type 2C protein phosphatase Ptc6 participates in activation of the Slt2-mediated cell wall integrity pathway in Saccharomyces cerevisiae.

Sharmin D, Sasano Y, Sugiyama M, Harashima S.

J Biosci Bioeng. 2015 Apr;119(4):392-8. doi: 10.1016/j.jbiosc.2014.09.013. Epub 2014 Nov 10.

PMID:
25449759
18.

TEAK: topology enrichment analysis framework for detecting activated biological subpathways.

Judeh T, Johnson C, Kumar A, Zhu D.

Nucleic Acids Res. 2013 Feb 1;41(3):1425-37. doi: 10.1093/nar/gks1299. Epub 2012 Dec 24.

19.

Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae.

Sharma S, Yang J, Düttmann S, Watzinger P, Kötter P, Entian KD.

Nucleic Acids Res. 2014 Mar;42(5):3246-60. doi: 10.1093/nar/gkt1281. Epub 2013 Dec 11.

20.

Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome.

Wlodarski T, Kutner J, Towpik J, Knizewski L, Rychlewski L, Kudlicki A, Rowicka M, Dziembowski A, Ginalski K.

PLoS One. 2011;6(8):e23168. doi: 10.1371/journal.pone.0023168. Epub 2011 Aug 9.

Supplemental Content

Support Center