Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse.

de Souza WR, de Gouvea PF, Savoldi M, Malavazi I, de Souza Bernardes LA, Goldman MHS, de Vries RP, de Castro Oliveira JV, Goldman GH.

Biotechnol Biofuels. 2011 Oct 18;4:40. doi: 10.1186/1754-6834-4-40.

2.

The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse.

de Souza WR, Maitan-Alfenas GP, de Gouvêa PF, Brown NA, Savoldi M, Battaglia E, Goldman MH, de Vries RP, Goldman GH.

Fungal Genet Biol. 2013 Nov;60:29-45. doi: 10.1016/j.fgb.2013.07.007. Epub 2013 Jul 26.

3.

Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei.

Borin GP, Sanchez CC, de Santana ES, Zanini GK, Dos Santos RAC, de Oliveira Pontes A, de Souza AT, Dal'Mas RMMTS, Riaño-Pachón DM, Goldman GH, Oliveira JVC.

BMC Genomics. 2017 Jun 30;18(1):501. doi: 10.1186/s12864-017-3857-5.

4.

Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.

Florencio C, Cunha FM, Badino AC, Farinas CS, Ximenes E, Ladisch MR.

Enzyme Microb Technol. 2016 Aug;90:53-60. doi: 10.1016/j.enzmictec.2016.04.011. Epub 2016 Apr 28.

PMID:
27241292
5.

Transcriptome and secretome analysis of Aspergillus fumigatus in the presence of sugarcane bagasse.

de Gouvêa PF, Bernardi AV, Gerolamo LE, de Souza Santos E, Riaño-Pachón DM, Uyemura SA, Dinamarco TM.

BMC Genomics. 2018 Apr 3;19(1):232. doi: 10.1186/s12864-018-4627-8.

6.

Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass.

Borin GP, Sanchez CC, de Souza AP, de Santana ES, de Souza AT, Paes Leme AF, Squina FM, Buckeridge M, Goldman GH, Oliveira JV.

PLoS One. 2015 Jun 8;10(6):e0129275. doi: 10.1371/journal.pone.0129275. eCollection 2015.

7.

The capability of endophytic fungi for production of hemicellulases and related enzymes.

Robl D, Delabona Pda S, Mergel CM, Rojas JD, Costa Pdos S, Pimentel IC, Vicente VA, da Cruz Pradella JG, Padilla G.

BMC Biotechnol. 2013 Oct 31;13:94. doi: 10.1186/1472-6750-13-94.

8.

Liquefaction of sugarcane bagasse for enzyme production.

Cunha FM, Kreke T, Badino AC, Farinas CS, Ximenes E, Ladisch MR.

Bioresour Technol. 2014 Nov;172:249-252. doi: 10.1016/j.biortech.2014.09.025. Epub 2014 Sep 16.

9.

Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse.

van den Brink J, Maitan-Alfenas GP, Zou G, Wang C, Zhou Z, Guimarães VM, de Vries RP.

Biotechnol J. 2014 Oct;9(10):1329-38. doi: 10.1002/biot.201400317. Epub 2014 Sep 10.

PMID:
25116172
10.

Saccharification of biomass using whole solid-state fermentation medium to avoid additional separation steps.

Pirota RD, Baleeiro FC, Farinas CS.

Biotechnol Prog. 2013 Nov-Dec;29(6):1430-40. doi: 10.1002/btpr.1811. Epub 2013 Oct 15.

PMID:
24115639
11.

Addition of metal ions to a (hemi)cellulolytic enzymatic cocktail produced in-house improves its activity, thermostability, and efficiency in the saccharification of pretreated sugarcane bagasse.

Vasconcellos VM, Tardioli PW, Giordano RL, Farinas CS.

N Biotechnol. 2016 May 25;33(3):331-7. doi: 10.1016/j.nbt.2015.12.002. Epub 2015 Dec 17.

PMID:
26709004
12.

Saccharification of pretreated sawdust by Aspergillus niger cellulase.

Sridevi A, Narasimha G, Ramanjaneyulu G, Dileepkumar K, Reddy BR, Devi PS.

3 Biotech. 2015 Dec;5(6):883-892. doi: 10.1007/s13205-015-0284-7. Epub 2015 Mar 19.

13.

Understanding the cellulolytic system of Trichoderma harzianum P49P11 and enhancing saccharification of pretreated sugarcane bagasse by supplementation with pectinase and α-L-arabinofuranosidase.

Delabona Pda S, Cota J, Hoffmam ZB, Paixão DA, Farinas CS, Cairo JP, Lima DJ, Squina FM, Ruller R, Pradella JG.

Bioresour Technol. 2013 Mar;131:500-7. doi: 10.1016/j.biortech.2012.12.105. Epub 2012 Dec 22.

PMID:
23391738
14.

Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei).

Stricker AR, Mach RL, de Graaff LH.

Appl Microbiol Biotechnol. 2008 Feb;78(2):211-20. doi: 10.1007/s00253-007-1322-0. Epub 2008 Jan 16. Review.

PMID:
18197406
15.
16.

Cellulases and hemicellulases from endophytic Acremonium species and its application on sugarcane bagasse hydrolysis.

de Almeida MN, Guimarães VM, Bischoff KM, Falkoski DL, Pereira OL, Gonçalves DS, de Rezende ST.

Appl Biochem Biotechnol. 2011 Sep;165(2):594-610. doi: 10.1007/s12010-011-9278-z. Epub 2011 May 15.

PMID:
21573756
17.

Quantitative analysis of adsorption and desorption behavior of individual cellulase components during the hydrolysis of lignocellulosic biomass with the addition of lysozyme.

Toyosawa Y, Ikeo M, Taneda D, Okino S.

Bioresour Technol. 2017 Jun;234:150-157. doi: 10.1016/j.biortech.2017.02.132. Epub 2017 Mar 17.

PMID:
28319763
18.

Enzymic saccharification of sugarcane bagasse pretreated by autohydrolysis-steam explosion.

Dekker RF, Wallis AF.

Biotechnol Bioeng. 1983 Dec;25(12):3027-48.

PMID:
18548636
19.

Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw.

Alvira P, Negro MJ, Ballesteros M.

Bioresour Technol. 2011 Mar;102(6):4552-8. doi: 10.1016/j.biortech.2010.12.112. Epub 2011 Jan 5.

PMID:
21262567
20.

Unraveling the structure of sugarcane bagasse after soaking in concentrated aqueous ammonia (SCAA) and ethanol production by Scheffersomyces (Pichia) stipitis.

Chandel AK, Antunes FA, Silva MB, da Silva SS.

Biotechnol Biofuels. 2013 Jul 15;6:102. doi: 10.1186/1754-6834-6-102. eCollection 2013.

Supplemental Content

Support Center