Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.

Phosphorylation of LRRK2 serines 955 and 973 is disrupted by Parkinson's disease mutations and LRRK2 pharmacological inhibition.

Doggett EA, Zhao J, Mork CN, Hu D, Nichols RJ.

J Neurochem. 2012 Jan;120(1):37-45. doi: 10.1111/j.1471-4159.2011.07537.x. Epub 2011 Nov 11.

2.

14-3-3 binding to LRRK2 is disrupted by multiple Parkinson's disease-associated mutations and regulates cytoplasmic localization.

Nichols RJ, Dzamko N, Morrice NA, Campbell DG, Deak M, Ordureau A, Macartney T, Tong Y, Shen J, Prescott AR, Alessi DR.

Biochem J. 2010 Sep 15;430(3):393-404. doi: 10.1042/BJ20100483.

3.

Screening for novel LRRK2 inhibitors using a high-throughput TR-FRET cellular assay for LRRK2 Ser935 phosphorylation.

Hermanson SB, Carlson CB, Riddle SM, Zhao J, Vogel KW, Nichols RJ, Bi K.

PLoS One. 2012;7(8):e43580. doi: 10.1371/journal.pone.0043580. Epub 2012 Aug 28.

4.

The IkappaB kinase family phosphorylates the Parkinson's disease kinase LRRK2 at Ser935 and Ser910 during Toll-like receptor signaling.

Dzamko N, Inesta-Vaquera F, Zhang J, Xie C, Cai H, Arthur S, Tan L, Choi H, Gray N, Cohen P, Pedrioli P, Clark K, Alessi DR.

PLoS One. 2012;7(6):e39132. doi: 10.1371/journal.pone.0039132. Epub 2012 Jun 18.

5.

Measurement of LRRK2 and Ser910/935 phosphorylated LRRK2 in peripheral blood mononuclear cells from idiopathic Parkinson's disease patients.

Dzamko N, Chua G, Ranola M, Rowe DB, Halliday GM.

J Parkinsons Dis. 2013;3(2):145-52. doi: 10.3233/JPD-130174.

PMID:
23938344
6.

Lack of correlation between the kinase activity of LRRK2 harboring kinase-modifying mutations and its phosphorylation at Ser910, 935, and Ser955.

Ito G, Fujimoto T, Kamikawaji S, Kuwahara T, Iwatsubo T.

PLoS One. 2014 May 16;9(5):e97988. doi: 10.1371/journal.pone.0097988. eCollection 2014.

7.

Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization.

Dzamko N, Deak M, Hentati F, Reith AD, Prescott AR, Alessi DR, Nichols RJ.

Biochem J. 2010 Sep 15;430(3):405-13. doi: 10.1042/BJ20100784.

8.

Identification of protein phosphatase 1 as a regulator of the LRRK2 phosphorylation cycle.

Lobbestael E, Zhao J, Rudenko IN, Beylina A, Gao F, Wetter J, Beullens M, Bollen M, Cookson MR, Baekelandt V, Nichols RJ, Taymans JM.

Biochem J. 2013 Nov 15;456(1):119-28. doi: 10.1042/BJ20121772.

9.

Pharmacological inhibition of LRRK2 cellular phosphorylation sites provides insight into LRRK2 biology.

Zhao J, Hermanson SB, Carlson CB, Riddle SM, Vogel KW, Bi K, Nichols RJ.

Biochem Soc Trans. 2012 Oct;40(5):1158-62. Review.

PMID:
22988882
10.

Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2.

Deng X, Dzamko N, Prescott A, Davies P, Liu Q, Yang Q, Lee JD, Patricelli MP, Nomanbhoy TK, Alessi DR, Gray NS.

Nat Chem Biol. 2011 Apr;7(4):203-5. doi: 10.1038/nchembio.538. Epub 2011 Mar 6.

11.

14-3-3 proteins are promising LRRK2 interactors.

Rudenko IN, Cookson MR.

Biochem J. 2010 Sep 15;430(3):e5-6. doi: 10.1042/BJ20101200.

PMID:
20795948
12.

Phosphorylation-dependent 14-3-3 binding to LRRK2 is impaired by common mutations of familial Parkinson's disease.

Li X, Wang QJ, Pan N, Lee S, Zhao Y, Chait BT, Yue Z.

PLoS One. 2011 Mar 1;6(3):e17153. doi: 10.1371/journal.pone.0017153. Erratum in: PLoS One.2011;6(7). doi: 10.1371/annotation/e66e7e90-9503-46b8-91f9-abe4d5056ba1.

13.

LRRK2 phosphorylates moesin at threonine-558: characterization of how Parkinson's disease mutants affect kinase activity.

Jaleel M, Nichols RJ, Deak M, Campbell DG, Gillardon F, Knebel A, Alessi DR.

Biochem J. 2007 Jul 15;405(2):307-17.

14.

LRRK2 kinase activity and biology are not uniformly predicted by its autophosphorylation and cellular phosphorylation site status.

Reynolds A, Doggett EA, Riddle SM, Lebakken CS, Nichols RJ.

Front Mol Neurosci. 2014 Jun 24;7:54. doi: 10.3389/fnmol.2014.00054. eCollection 2014.

15.

Differential effects of familial parkinson mutations in LRRK2 revealed by a systematic analysis of autophosphorylation.

Kamikawaji S, Ito G, Sano T, Iwatsubo T.

Biochemistry. 2013 Sep 3;52(35):6052-62. doi: 10.1021/bi400596m. Epub 2013 Aug 23.

PMID:
23924436
16.

Dominant-negative effects of LRRK2 heterodimers: a possible mechanism of neurodegeneration in Parkinson's disease caused by LRRK2 I2020T mutation.

Ohta E, Kawakami F, Kubo M, Obata F.

Biochem Biophys Res Commun. 2013 Jan 11;430(2):560-6. doi: 10.1016/j.bbrc.2012.11.113. Epub 2012 Dec 7.

PMID:
23220480
17.

Characterization of TAE684 as a potent LRRK2 kinase inhibitor.

Zhang J, Deng X, Choi HG, Alessi DR, Gray NS.

Bioorg Med Chem Lett. 2012 Mar 1;22(5):1864-9. doi: 10.1016/j.bmcl.2012.01.084. Epub 2012 Jan 28.

18.

Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease.

Lee BD, Shin JH, VanKampen J, Petrucelli L, West AB, Ko HS, Lee YI, Maguire-Zeiss KA, Bowers WJ, Federoff HJ, Dawson VL, Dawson TM.

Nat Med. 2010 Sep;16(9):998-1000. doi: 10.1038/nm.2199. Epub 2010 Aug 22.

19.

Mutations in the LRRK2 Roc-COR tandem domain link Parkinson's disease to Wnt signalling pathways.

Sancho RM, Law BM, Harvey K.

Hum Mol Genet. 2009 Oct 15;18(20):3955-68. doi: 10.1093/hmg/ddp337. Epub 2009 Jul 22.

20.

Supplemental Content

Support Center