Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 252

1.

Aerobic glycolysis: meeting the metabolic requirements of cell proliferation.

Lunt SY, Vander Heiden MG.

Annu Rev Cell Dev Biol. 2011;27:441-64. doi: 10.1146/annurev-cellbio-092910-154237. Review.

PMID:
21985671
2.

Changes in human endothelial cell energy metabolic capacities during in vitro cultivation. The role of "aerobic glycolysis" and proliferation.

Peters K, Kamp G, Berz A, Unger RE, Barth S, Salamon A, Rychly J, Kirkpatrick CJ.

Cell Physiol Biochem. 2009;24(5-6):483-92. doi: 10.1159/000257490. Epub 2009 Nov 4.

3.

Mitochondria in cancer: not just innocent bystanders.

Frezza C, Gottlieb E.

Semin Cancer Biol. 2009 Feb;19(1):4-11. doi: 10.1016/j.semcancer.2008.11.008. Epub 2008 Dec 3. Review.

PMID:
19101633
4.

Glucose avidity of carcinomas.

Ortega AD, Sánchez-Aragó M, Giner-Sánchez D, Sánchez-Cenizo L, Willers I, Cuezva JM.

Cancer Lett. 2009 Apr 18;276(2):125-35. doi: 10.1016/j.canlet.2008.08.007. Epub 2008 Sep 14. Review.

PMID:
18790562
5.
6.

Altered metabolism in cancer.

Locasale JW, Cantley LC.

BMC Biol. 2010 Jun 25;8:88. doi: 10.1186/1741-7007-8-88.

7.

Mitochondria, hexokinase and pyruvate kinase isozymes in the aerobic glycolysis of tumor cells.

Petrucci D, Cesare P, Colafarina S.

Ital J Biochem. 1997 Sep;46(3):131-41.

PMID:
9442422
8.

Oxidative metabolism in cancer growth.

Ristow M.

Curr Opin Clin Nutr Metab Care. 2006 Jul;9(4):339-45. Review.

PMID:
16778561
9.

Comparative bioenergetic assessment of transformed cells using a cell energy budget platform.

Zhdanov AV, Favre C, O'Flaherty L, Adam J, O'Connor R, Pollard PJ, Papkovsky DB.

Integr Biol (Camb). 2011 Nov;3(11):1135-42. doi: 10.1039/c1ib00050k. Epub 2011 Oct 17.

PMID:
22005712
10.

Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells.

Feron O.

Radiother Oncol. 2009 Sep;92(3):329-33. doi: 10.1016/j.radonc.2009.06.025. Epub 2009 Jul 13. Review.

PMID:
19604589
11.
12.

Mitochondrial metabolism and cancer.

Weinberg F, Chandel NS.

Ann N Y Acad Sci. 2009 Oct;1177:66-73. doi: 10.1111/j.1749-6632.2009.05039.x. Review.

PMID:
19845608
13.

The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.

Lu J, Tan M, Cai Q.

Cancer Lett. 2015 Jan 28;356(2 Pt A):156-64. doi: 10.1016/j.canlet.2014.04.001. Epub 2014 Apr 13. Review.

14.

Application of metabolic-control logic to fuel utilization and its significance in tumor cells.

Newsholme EA, Board M.

Adv Enzyme Regul. 1991;31:225-46. Review.

PMID:
1877389
15.

Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells.

Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D, Armistead S, Lemire K, Orrell J, Teich J, Chomicz S, Ferrick DA.

Am J Physiol Cell Physiol. 2007 Jan;292(1):C125-36. Epub 2006 Sep 13.

16.

Differential utilization of two ATP-generating pathways is regulated by p53.

Assaily W, Benchimol S.

Cancer Cell. 2006 Jul;10(1):4-6.

17.

Reassessment of FDG uptake in tumor cells: high FDG uptake as a reflection of oxygen-independent glycolysis dominant energy production.

Waki A, Fujibayashi Y, Yonekura Y, Sadato N, Ishii Y, Yokoyama A.

Nucl Med Biol. 1997 Oct;24(7):665-70.

PMID:
9352538
18.

NF-κB controls energy homeostasis and metabolic adaptation by upregulating mitochondrial respiration.

Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, Moretti M, De Smaele E, Beg AA, Tergaonkar V, Chandel NS, Franzoso G.

Nat Cell Biol. 2011 Aug 28;13(10):1272-9. doi: 10.1038/ncb2324.

19.
20.

Evidence for an alternative glycolytic pathway in rapidly proliferating cells.

Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, Amador-Noguez D, Christofk HR, Wagner G, Rabinowitz JD, Asara JM, Cantley LC.

Science. 2010 Sep 17;329(5998):1492-9. doi: 10.1126/science.1188015.

Supplemental Content

Support Center