Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 259

1.

Gene expression biomarkers provide sensitive indicators of in planta nitrogen status in maize.

Yang XS, Wu J, Ziegler TE, Yang X, Zayed A, Rajani MS, Zhou D, Basra AS, Schachtman DP, Peng M, Armstrong CL, Caldo RA, Morrell JA, Lacy M, Staub JM.

Plant Physiol. 2011 Dec;157(4):1841-52. doi: 10.1104/pp.111.187898. Epub 2011 Oct 6.

2.

Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots.

Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C.

PLoS One. 2011;6(11):e28009. doi: 10.1371/journal.pone.0028009. Epub 2011 Nov 23.

3.

Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.

Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella L.

J Exp Bot. 2008;59(9):2479-97. doi: 10.1093/jxb/ern115. Epub 2008 May 23.

PMID:
18503042
4.

Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines.

O'Rourke JA, Charlson DV, Gonzalez DO, Vodkin LO, Graham MA, Cianzio SR, Grusak MA, Shoemaker RC.

BMC Genomics. 2007 Dec 21;8:476.

5.

Comparative profiles of gene expression in leaves and roots of maize seedlings under conditions of salt stress and the removal of salt stress.

Qing DJ, Lu HF, Li N, Dong HT, Dong DF, Li YZ.

Plant Cell Physiol. 2009 Apr;50(4):889-903. doi: 10.1093/pcp/pcp038. Epub 2009 Mar 4.

PMID:
19264788
6.

High throughput RNA sequencing of a hybrid maize and its parents shows different mechanisms responsive to nitrogen limitation.

Bi YM, Meyer A, Downs GS, Shi X, El-Kereamy A, Lukens L, Rothstein SJ.

BMC Genomics. 2014 Jan 28;15:77. doi: 10.1186/1471-2164-15-77.

7.

Transcriptomic analysis highlights reciprocal interactions of urea and nitrate for nitrogen acquisition by maize roots.

Zanin L, Zamboni A, Monte R, Tomasi N, Varanini Z, Cesco S, Pinton R.

Plant Cell Physiol. 2015 Mar;56(3):532-48. doi: 10.1093/pcp/pcu202. Epub 2014 Dec 17.

PMID:
25524070
8.

Molecular identification and functional analysis of a maize (Zea mays) DUR3 homolog that transports urea with high affinity.

Liu GW, Sun AL, Li DQ, Athman A, Gilliham M, Liu LH.

Planta. 2015 Apr;241(4):861-74. doi: 10.1007/s00425-014-2219-7. Epub 2014 Dec 19.

PMID:
25522795
9.

Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress.

He X, Ma H, Zhao X, Nie S, Li Y, Zhang Z, Shen Y, Chen Q, Lu Y, Lan H, Zhou S, Gao S, Pan G, Lin H.

PLoS One. 2016 Mar 18;11(3):e0151697. doi: 10.1371/journal.pone.0151697. eCollection 2016.

10.

New insights to lateral rooting: Differential responses to heterogeneous nitrogen availability among maize root types.

Yu P, White PJ, Li C.

Plant Signal Behav. 2015;10(10):e1013795. doi: 10.1080/15592324.2015.1013795. Epub 2015 Oct 6.

11.

Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions.

Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, Ohsugi R.

Plant Biotechnol J. 2011 Oct;9(8):826-37. doi: 10.1111/j.1467-7652.2011.00592.x. Epub 2011 May 30.

12.

Phosphate starvation of maize inhibits lateral root formation and alters gene expression in the lateral root primordium zone.

Li Z, Xu C, Li K, Yan S, Qu X, Zhang J.

BMC Plant Biol. 2012 Jun 14;12:89. doi: 10.1186/1471-2229-12-89.

13.

Transcriptome analysis of nitrogen-efficient rice over-expressing alanine aminotransferase.

Beatty PH, Shrawat AK, Carroll RT, Zhu T, Good AG.

Plant Biotechnol J. 2009 Aug;7(6):562-76. doi: 10.1111/j.1467-7652.2009.00424.x. Epub 2009 Jun 8.

14.

Nitrogen-use efficiency in maize (Zea mays L.): from 'omics' studies to metabolic modelling.

Simons M, Saha R, Guillard L, Clément G, Armengaud P, Cañas R, Maranas CD, Lea PJ, Hirel B.

J Exp Bot. 2014 Oct;65(19):5657-71. doi: 10.1093/jxb/eru227. Epub 2014 May 26. Review.

PMID:
24863438
15.

Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency.

Kant S, Bi YM, Rothstein SJ.

J Exp Bot. 2011 Feb;62(4):1499-509. doi: 10.1093/jxb/erq297. Epub 2010 Oct 6. Review.

PMID:
20926552
16.

The panorama of physiological responses and gene expression of whole plant of maize inbred line YQ7-96 at the three-leaf stage under water deficit and re-watering.

Lu HF, Dong HT, Sun CB, Qing DJ, Li N, Wu ZK, Wang ZQ, Li YZ.

Theor Appl Genet. 2011 Oct;123(6):943-58. doi: 10.1007/s00122-011-1638-0. Epub 2011 Jul 7.

PMID:
21735236
17.

Modification of nitrogen remobilization, grain fill and leaf senescence in maize (Zea mays) by transposon insertional mutagenesis in a protease gene.

Donnison IS, Gay AP, Thomas H, Edwards KJ, Edwards D, James CL, Thomas AM, Ougham HJ.

New Phytol. 2007;173(3):481-94.

18.

Nitrogen management and senescence in two maize hybrids differing in the persistence of leaf greenness: agronomic, physiological and molecular aspects.

Martin A, Belastegui-Macadam X, Quilleré I, Floriot M, Valadier MH, Pommel B, Andrieu B, Donnison I, Hirel B.

New Phytol. 2005 Aug;167(2):483-92.

19.

Foliar herbivory triggers local and long distance defense responses in maize.

Ankala A, Kelley RY, Rowe DE, Williams WP, Luthe DS.

Plant Sci. 2013 Feb;199-200:103-12. doi: 10.1016/j.plantsci.2012.09.017. Epub 2012 Nov 9.

PMID:
23265323
20.

Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses.

Humbert S, Subedi S, Cohn J, Zeng B, Bi YM, Chen X, Zhu T, McNicholas PD, Rothstein SJ.

BMC Genomics. 2013 Jan 16;14:3. doi: 10.1186/1471-2164-14-3.

Supplemental Content

Support Center