Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 86

1.

LRP130 protein remodels mitochondria and stimulates fatty acid oxidation.

Liu L, Sanosaka M, Lei S, Bestwick ML, Frey JH Jr, Surovtseva YV, Shadel GS, Cooper MP.

J Biol Chem. 2011 Dec 2;286(48):41253-64. doi: 10.1074/jbc.M111.276121. Epub 2011 Oct 4.

2.

Nutrient sensing by the mitochondrial transcription machinery dictates oxidative phosphorylation.

Liu L, Nam M, Fan W, Akie TE, Hoaglin DC, Gao G, Keaney JF Jr, Cooper MP.

J Clin Invest. 2014 Feb;124(2):768-84. doi: 10.1172/JCI69413. Epub 2014 Jan 16.

3.

The leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) does not activate transcription in mammalian mitochondria.

Harmel J, Ruzzenente B, Terzioglu M, Spåhr H, Falkenberg M, Larsson NG.

J Biol Chem. 2013 May 31;288(22):15510-9. doi: 10.1074/jbc.M113.471649. Epub 2013 Apr 18.

4.

Evidence for physical association of mitochondrial fatty acid oxidation and oxidative phosphorylation complexes.

Wang Y, Mohsen AW, Mihalik SJ, Goetzman ES, Vockley J.

J Biol Chem. 2010 Sep 24;285(39):29834-41. doi: 10.1074/jbc.M110.139493. Epub 2010 Jul 27.

5.

Loss of hepatic LRPPRC alters mitochondrial bioenergetics, regulation of permeability transition and trans-membrane ROS diffusion.

Cuillerier A, Honarmand S, Cadete VJJ, Ruiz M, Forest A, Deschênes S, Beauchamp C; LSFC Consortium, Charron G, Rioux JD, Des Rosiers C, Shoubridge EA, Burelle Y.

Hum Mol Genet. 2017 Aug 15;26(16):3186-3201. doi: 10.1093/hmg/ddx202.

PMID:
28575497
6.

OXPHOS-Mediated Induction of NAD+ Promotes Complete Oxidation of Fatty Acids and Interdicts Non-Alcoholic Fatty Liver Disease.

Akie TE, Liu L, Nam M, Lei S, Cooper MP.

PLoS One. 2015 May 1;10(5):e0125617. doi: 10.1371/journal.pone.0125617. eCollection 2015.

7.

In vitro treatment of HepG2 cells with saturated fatty acids reproduces mitochondrial dysfunction found in nonalcoholic steatohepatitis.

García-Ruiz I, Solís-Muñoz P, Fernández-Moreira D, Muñoz-Yagüe T, Solís-Herruzo JA.

Dis Model Mech. 2015 Feb;8(2):183-91. doi: 10.1242/dmm.018234. Epub 2014 Dec 24.

8.

Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice.

Bugger H, Chen D, Riehle C, Soto J, Theobald HA, Hu XX, Ganesan B, Weimer BC, Abel ED.

Diabetes. 2009 Sep;58(9):1986-97. doi: 10.2337/db09-0259. Epub 2009 Jun 19.

9.

UCP3 expression in liver modulates gene expression and oxidative metabolism in response to fatty acids, and sensitizes mitochondria to permeability transition.

Camara Y, Mampel T, Armengol J, Villarroya F, Dejean L.

Cell Physiol Biochem. 2009;24(3-4):243-52. doi: 10.1159/000233249. Epub 2009 Aug 3.

10.

Defects in energy homeostasis in Leigh syndrome French Canadian variant through PGC-1alpha/LRP130 complex.

Cooper MP, Qu L, Rohas LM, Lin J, Yang W, Erdjument-Bromage H, Tempst P, Spiegelman BM.

Genes Dev. 2006 Nov 1;20(21):2996-3009. Epub 2006 Oct 18.

11.

ChChd3, an inner mitochondrial membrane protein, is essential for maintaining crista integrity and mitochondrial function.

Darshi M, Mendiola VL, Mackey MR, Murphy AN, Koller A, Perkins GA, Ellisman MH, Taylor SS.

J Biol Chem. 2011 Jan 28;286(4):2918-32. doi: 10.1074/jbc.M110.171975. Epub 2010 Nov 16.

12.

BNip3 regulates mitochondrial function and lipid metabolism in the liver.

Glick D, Zhang W, Beaton M, Marsboom G, Gruber M, Simon MC, Hart J, Dorn GW 2nd, Brady MJ, Macleod KF.

Mol Cell Biol. 2012 Jul;32(13):2570-84. doi: 10.1128/MCB.00167-12. Epub 2012 Apr 30.

13.

Inhibition by perhexiline of oxidative phosphorylation and the beta-oxidation of fatty acids: possible role in pseudoalcoholic liver lesions.

Deschamps D, DeBeco V, Fisch C, Fromenty B, Guillouzo A, Pessayre D.

Hepatology. 1994 Apr;19(4):948-61.

PMID:
8138270
15.
16.

SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells.

Nasrin N, Wu X, Fortier E, Feng Y, Bare' OC, Chen S, Ren X, Wu Z, Streeper RS, Bordone L.

J Biol Chem. 2010 Oct 15;285(42):31995-2002. doi: 10.1074/jbc.M110.124164. Epub 2010 Aug 4.

17.

The transcriptional coactivator PGC-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis.

Lehman JJ, Boudina S, Banke NH, Sambandam N, Han X, Young DM, Leone TC, Gross RW, Lewandowski ED, Abel ED, Kelly DP.

Am J Physiol Heart Circ Physiol. 2008 Jul;295(1):H185-96. doi: 10.1152/ajpheart.00081.2008. Epub 2008 May 16.

18.

The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system.

Pich S, Bach D, Briones P, Liesa M, Camps M, Testar X, Palacín M, Zorzano A.

Hum Mol Genet. 2005 Jun 1;14(11):1405-15. Epub 2005 Apr 13.

PMID:
15829499
19.

Modulation of PGC-1 coactivator pathways in brown fat differentiation through LRP130.

Cooper MP, Uldry M, Kajimura S, Arany Z, Spiegelman BM.

J Biol Chem. 2008 Nov 14;283(46):31960-7. doi: 10.1074/jbc.M805431200. Epub 2008 Aug 26.

20.

Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression.

Amorim PA, Nguyen TD, Shingu Y, Schwarzer M, Mohr FW, Schrepper A, Doenst T.

J Thorac Cardiovasc Surg. 2010 Nov;140(5):1160-7. doi: 10.1016/j.jtcvs.2010.08.003. Epub 2010 Sep 17.

Supplemental Content

Support Center