Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins.

Barberis M, Linke C, Adrover MÀ, González-Novo A, Lehrach H, Krobitsch S, Posas F, Klipp E.

Biotechnol Adv. 2012 Jan-Feb;30(1):108-30. doi: 10.1016/j.biotechadv.2011.09.004. Epub 2011 Sep 18.

PMID:
21963604
2.

Unraveling interactions of cell cycle-regulating proteins Sic1 and B-type cyclins in living yeast cells: a FLIM-FRET approach.

Schreiber G, Barberis M, Scolari S, Klaus C, Herrmann A, Klipp E.

FASEB J. 2012 Feb;26(2):546-54. doi: 10.1096/fj.11-192518. Epub 2011 Oct 14.

PMID:
22002907
3.

Sic1 as a timer of Clb cyclin waves in the yeast cell cycle--design principle of not just an inhibitor.

Barberis M.

FEBS J. 2012 Sep;279(18):3386-410. doi: 10.1111/j.1742-4658.2012.08542.x. Epub 2012 Mar 21. Review.

4.
5.

Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase.

Kõivomägi M, Valk E, Venta R, Iofik A, Lepiku M, Balog ER, Rubin SM, Morgan DO, Loog M.

Nature. 2011 Oct 12;480(7375):128-31. doi: 10.1038/nature10560.

6.

Phosphorylation and proteolysis: partners in the regulation of cell division in budding yeast.

Deshaies RJ.

Curr Opin Genet Dev. 1997 Feb;7(1):7-16. Review. Erratum in: Curr Opin Genet Dev 1997 Jun;7(3):424.

PMID:
9024629
7.

Yeast IME2 functions early in meiosis upstream of cell cycle-regulated SBF and MBF targets.

Brush GS, Najor NA, Dombkowski AA, Cukovic D, Sawarynski KE.

PLoS One. 2012;7(2):e31575. doi: 10.1371/journal.pone.0031575. Epub 2012 Feb 29.

8.

Subcellular localization of the cyclin dependent kinase inhibitor Sic1 is modulated by the carbon source in budding yeast.

Rossi RL, Zinzalla V, Mastriani A, Vanoni M, Alberghina L.

Cell Cycle. 2005 Dec;4(12):1798-807. Epub 2005 Dec 21.

PMID:
16294029
9.
10.
11.

A low number of SIC1 mRNA molecules ensures a low noise level in cell cycle progression of budding yeast.

Barberis M, Beck C, Amoussouvi A, Schreiber G, Diener C, Herrmann A, Klipp E.

Mol Biosyst. 2011 Oct;7(10):2804-12. doi: 10.1039/c1mb05073g. Epub 2011 Jun 30.

PMID:
21717009
12.

The yeast cyclin-dependent kinase inhibitor Sic1 and mammalian p27Kip1 are functional homologues with a structurally conserved inhibitory domain.

Barberis M, De Gioia L, Ruzzene M, Sarno S, Coccetti P, Fantucci P, Vanoni M, Alberghina L.

Biochem J. 2005 May 1;387(Pt 3):639-47.

13.

The transcription factor Swi5 regulates expression of the cyclin kinase inhibitor p40SIC1.

Knapp D, Bhoite L, Stillman DJ, Nasmyth K.

Mol Cell Biol. 1996 Oct;16(10):5701-7.

14.

Cdc6 cooperates with Sic1 and Hct1 to inactivate mitotic cyclin-dependent kinases.

Calzada A, Sacristán M, Sánchez E, Bueno A.

Nature. 2001 Jul 19;412(6844):355-8. Erratum in: Nature. 2003 Dec 4;426(6966):584.

PMID:
11460169
15.

Distinct activities of the related protein kinases Cdk1 and Ime2.

Sawarynski KE, Kaplun A, Tzivion G, Brush GS.

Biochim Biophys Acta. 2007 Mar;1773(3):450-6. Epub 2006 Oct 18.

16.
18.

Double-negative feedback between S-phase cyclin-CDK and CKI generates abruptness in the G1/S switch.

Venta R, Valk E, Kõivomägi M, Loog M.

Front Physiol. 2012 Dec 6;3:459. doi: 10.3389/fphys.2012.00459. eCollection 2012.

19.
20.

Testing a mathematical model of the yeast cell cycle.

Cross FR, Archambault V, Miller M, Klovstad M.

Mol Biol Cell. 2002 Jan;13(1):52-70.

Supplemental Content

Support Center