Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116

1.

CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope.

Mak AB, Blakely KM, Williams RA, PenttilÀ PA, Shukalyuk AI, Osman KT, Kasimer D, Ketela T, Moffat J.

J Biol Chem. 2011 Nov 25;286(47):41046-56. doi: 10.1074/jbc.M111.261545. Epub 2011 Sep 21.

2.

The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation.

Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, Zeilstra J, Pals ST, Mehmet H, Stassi G, Medema JP.

Cancer Res. 2010 Jan 15;70(2):719-29. doi: 10.1158/0008-5472.CAN-09-1820. Epub 2010 Jan 12.

3.

CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells.

Barrantes-Freer A, Renovanz M, Eich M, Braukmann A, Sprang B, Spirin P, Pardo LA, Giese A, Kim EL.

PLoS One. 2015 Jun 18;10(6):e0130519. doi: 10.1371/journal.pone.0130519. eCollection 2015.

4.

The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells.

Bidlingmaier S, Zhu X, Liu B.

J Mol Med (Berl). 2008 Sep;86(9):1025-32. doi: 10.1007/s00109-008-0357-8. Epub 2008 Jun 6. Review.

5.

Alpha2,3-Sialylation regulates the stability of stem cell marker CD133.

Zhou F, Cui C, Ge Y, Chen H, Li Q, Yang Z, Wu G, Sun S, Chen K, Gu J, Jiang J, Wei Y.

J Biochem. 2010 Sep;148(3):273-80. doi: 10.1093/jb/mvq062. Epub 2010 Jun 15.

PMID:
20551139
6.

Glioblastoma cells negative for the anti-CD133 antibody AC133 express a truncated variant of the CD133 protein.

Osmond TL, Broadley KW, McConnell MJ.

Int J Mol Med. 2010 Jun;25(6):883-8.

PMID:
20428792
7.

Insight into the complex regulation of CD133 in glioma.

Campos B, Herold-Mende CC.

Int J Cancer. 2011 Feb 1;128(3):501-10. doi: 10.1002/ijc.25687. Review.

8.

Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer.

Florek M, Haase M, Marzesco AM, Freund D, Ehninger G, Huttner WB, Corbeil D.

Cell Tissue Res. 2005 Jan;319(1):15-26. Epub 2004 Nov 19.

PMID:
15558321
9.

Post-translational modulation of CD133 expression during sodium butyrate-induced differentiation of HT29 human colon cancer cells: implications for its detection.

Sgambato A, Puglisi MA, Errico F, Rafanelli F, Boninsegna A, Rettino A, Genovese G, Coco C, Gasbarrini A, Cittadini A.

J Cell Physiol. 2010 Jul;224(1):234-41. doi: 10.1002/jcp.22124.

PMID:
20333645
10.

CD133 glycosylation is enhanced by hypoxia in cultured glioma stem cells.

Lehnus KS, Donovan LK, Huang X, Zhao N, Warr TJ, Pilkington GJ, An Q.

Int J Oncol. 2013 Mar;42(3):1011-7. doi: 10.3892/ijo.2013.1787. Epub 2013 Jan 22.

PMID:
23340741
11.

N-glycan structures and associated gene expression reflect the characteristic N-glycosylation pattern of human hematopoietic stem and progenitor cells.

Hemmoranta H, Satomaa T, Blomqvist M, Heiskanen A, Aitio O, Saarinen J, Natunen J, Partanen J, Laine J, Jaatinen T.

Exp Hematol. 2007 Aug;35(8):1279-92.

PMID:
17662891
12.

A gene signature distinguishing CD133hi from CD133- colorectal cancer cells: essential role for EGR1 and downstream factors.

Ernst A, Aigner M, Nakata S, Engel F, Schlotter M, Kloor M, Brand K, Schmitt S, Steinert G, Rahbari N, Koch M, Radlwimmer B, Weitz J, Lichter P.

Pathology. 2011 Apr;43(3):220-7. doi: 10.1097/PAT.0b013e328344e391.

PMID:
21436631
13.

Impact of CD133 (AC133) and CD90 expression analysis for acute leukemia immunophenotyping.

Wuchter C, Ratei R, Spahn G, Schoch C, Harbott J, Schnittger S, Haferlach T, Creutzig U, Sperling C, Karawajew L, Ludwig WD.

Haematologica. 2001 Feb;86(2):154-61.

14.

Two novel monoclonal antibodies against human CD133-2: distinct epitopes and agonist activity to enhance growth of CD133 expression cells in vitro.

Wang J, Li F, Zhang G, Chen Y, Hu Y, Chen X, Lu B, Zhang X.

Hybridoma (Larchmt). 2010 Jun;29(3):241-9. doi: 10.1089/hyb.2009.0113.

PMID:
20569000
15.

RNA aptamers targeting cancer stem cell marker CD133.

Shigdar S, Qiao L, Zhou SF, Xiang D, Wang T, Li Y, Lim LY, Kong L, Li L, Duan W.

Cancer Lett. 2013 Mar 1;330(1):84-95. doi: 10.1016/j.canlet.2012.11.032. Epub 2012 Nov 27.

PMID:
23196060
16.

Stem cell marker prominin-1/AC133 is expressed in duct cells of the adult human pancreas.

Lardon J, Corbeil D, Huttner WB, Ling Z, Bouwens L.

Pancreas. 2008 Jan;36(1):e1-6. doi: 10.1097/mpa.0b013e318149f2dc.

PMID:
18192867
17.

Cell cycle-dependent variation of a CD133 epitope in human embryonic stem cell, colon cancer, and melanoma cell lines.

Jaksch M, MĂșnera J, Bajpai R, Terskikh A, Oshima RG.

Cancer Res. 2008 Oct 1;68(19):7882-6. doi: 10.1158/0008-5472.CAN-08-0723.

18.

Mutation of N-linked glycosylation at Asn548 in CD133 decreases its ability to promote hepatoma cell growth.

Liu Y, Ren S, Xie L, Cui C, Xing Y, Liu C, Cao B, Yang F, Li Y, Chen X, Wei Y, Lu H, Jiang J.

Oncotarget. 2015 Aug 21;6(24):20650-60.

19.

Targeting cancer stem cells with an 131I-labeled anti-AC133 monoclonal antibody in human colorectal cancer xenografts.

Lang J, Lan X, Liu Y, Jin X, Wu T, Sun X, Wen Q, An R.

Nucl Med Biol. 2015 May;42(5):505-12. doi: 10.1016/j.nucmedbio.2015.01.003. Epub 2015 Jan 9.

PMID:
25669587
20.

Identification of a novel monoclonal antibody recognizing CD133.

Swaminathan SK, Olin MR, Forster CL, Cruz KS, Panyam J, Ohlfest JR.

J Immunol Methods. 2010 Sep 30;361(1-2):110-5. doi: 10.1016/j.jim.2010.07.007. Epub 2010 Jul 30.

PMID:
20674577

Supplemental Content

Support Center