Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 91

1.
2.

The role of ADP-ribosylation factor and SAR1 in vesicular trafficking in plants.

Memon AR.

Biochim Biophys Acta. 2004 Jul 1;1664(1):9-30. Review. Erratum in: Biochim Biophys Acta. 2004 Oct 11;1665(1-2):201.

3.

ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat.

Yang JS, Lee SY, Gao M, Bourgoin S, Randazzo PA, Premont RT, Hsu VW.

J Cell Biol. 2002 Oct 14;159(1):69-78. Epub 2002 Oct 14.

4.

ArfGAP1 promotes COPI vesicle formation by facilitating coatomer polymerization.

Shiba Y, Luo R, Hinshaw JE, Szul T, Hayashi R, Sztul E, Nagashima K, Baxa U, Randazzo PA.

Cell Logist. 2011 Jul;1(4):139-154. Epub 2011 Jul 1.

5.

Differential roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI trafficking.

Weimer C, Beck R, Eckert P, Reckmann I, Moelleken J, Brügger B, Wieland F.

J Cell Biol. 2008 Nov 17;183(4):725-35. doi: 10.1083/jcb.200806140.

6.

Arf GAPs and membrane traffic.

Nie Z, Randazzo PA.

J Cell Sci. 2006 Apr 1;119(Pt 7):1203-11. Review.

7.

A BAR domain in the N terminus of the Arf GAP ASAP1 affects membrane structure and trafficking of epidermal growth factor receptor.

Nie Z, Hirsch DS, Luo R, Jian X, Stauffer S, Cremesti A, Andrade J, Lebowitz J, Marino M, Ahvazi B, Hinshaw JE, Randazzo PA.

Curr Biol. 2006 Jan 24;16(2):130-9.

8.

The yeast Arf-GAP Glo3p is required for the endocytic recycling of cell surface proteins.

Kawada D, Kobayashi H, Tomita T, Nakata E, Nagano M, Siekhaus DE, Toshima JY, Toshima J.

Biochim Biophys Acta. 2015 Jan;1853(1):144-56. doi: 10.1016/j.bbamcr.2014.10.009. Epub 2014 Oct 18.

9.

Role of ArfGAP1 in COPI vesicle biogenesis.

Hsu VW.

Cell Logist. 2011 Mar;1(2):55-56.

10.

ACAPs are arf6 GTPase-activating proteins that function in the cell periphery.

Jackson TR, Brown FD, Nie Z, Miura K, Foroni L, Sun J, Hsu VW, Donaldson JG, Randazzo PA.

J Cell Biol. 2000 Oct 30;151(3):627-38.

11.

Moesin regulates the trafficking of nascent clathrin-coated vesicles.

Barroso-González J, Machado JD, García-Expósito L, Valenzuela-Fernández A.

J Biol Chem. 2009 Jan 23;284(4):2419-34. doi: 10.1074/jbc.M805311200. Epub 2008 Nov 30.

12.

Role of SH3 domain-containing proteins in clathrin-mediated vesicle trafficking in Arabidopsis.

Lam BC, Sage TL, Bianchi F, Blumwald E.

Plant Cell. 2001 Nov;13(11):2499-512.

14.

Key components of the fission machinery are interchangeable.

Yang JS, Zhang L, Lee SY, Gad H, Luini A, Hsu VW.

Nat Cell Biol. 2006 Dec;8(12):1376-82. Epub 2006 Nov 5.

PMID:
17086176
15.

The Arf6 GTPase-activating proteins ARAP2 and ACAP1 define distinct endosomal compartments that regulate integrin α5β1 traffic.

Chen PW, Luo R, Jian X, Randazzo PA.

J Biol Chem. 2014 Oct 31;289(44):30237-48. doi: 10.1074/jbc.M114.596155. Epub 2014 Sep 15.

16.

Transport of the cholera toxin B-subunit from recycling endosomes to the Golgi requires clathrin and AP-1.

Matsudaira T, Niki T, Taguchi T, Arai H.

J Cell Sci. 2015 Aug 15;128(16):3131-42. doi: 10.1242/jcs.172171. Epub 2015 Jul 1.

17.

Interactions between Rab and Arf GTPases regulate endosomal phosphatidylinositol-4,5-bisphosphate during endocytic recycling.

Shi A, Grant BD.

Small GTPases. 2013 Apr-Jun;4(2):106-9. doi: 10.4161/sgtp.23477. Epub 2013 Feb 7.

18.

The Arf GTPase-activating protein family is exploited by Salmonella enterica serovar Typhimurium to invade nonphagocytic host cells.

Davidson AC, Humphreys D, Brooks AB, Hume PJ, Koronakis V.

MBio. 2015 Feb 10;6(1). pii: e02253-14. doi: 10.1128/mBio.02253-14.

19.

ArfGAP1 function in COPI mediated membrane traffic: currently debated models and comparison to other coat-binding ArfGAPs.

Shiba Y, Randazzo PA.

Histol Histopathol. 2012 Sep;27(9):1143-53. doi: 10.14670/HH-27.1143. Review.

PMID:
22806901
20.

Arf GAPs: multifunctional proteins that regulate membrane traffic and actin remodelling.

Randazzo PA, Hirsch DS.

Cell Signal. 2004 Apr;16(4):401-13. Review.

PMID:
14709330

Supplemental Content

Support Center