Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 74

1.

Design, overexpression, and purification of polymerization-blocked yeast αβ-tubulin mutants.

Johnson V, Ayaz P, Huddleston P, Rice LM.

Biochemistry. 2011 Oct 11;50(40):8636-44. doi: 10.1021/bi2005174. Epub 2011 Sep 16.

PMID:
21888381
2.
3.
4.

A TOG:αβ-tubulin complex structure reveals conformation-based mechanisms for a microtubule polymerase.

Ayaz P, Ye X, Huddleston P, Brautigam CA, Rice LM.

Science. 2012 Aug 17;337(6096):857-60. doi: 10.1126/science.1221698.

5.

Purification and biochemical characterization of tubulin from the budding yeast Saccharomyces cerevisiae.

Davis A, Sage CR, Wilson L, Farrell KW.

Biochemistry. 1993 Aug 31;32(34):8823-35.

PMID:
8364030
6.

Mutagenesis of beta-tubulin cysteine residues in Saccharomyces cerevisiae: mutation of cysteine 354 results in cold-stable microtubules.

Gupta ML Jr, Bode CJ, Dougherty CA, Marquez RT, Himes RH.

Cell Motil Cytoskeleton. 2001 Jun;49(2):67-77.

PMID:
11443737
7.

Stu2, the budding yeast XMAP215/Dis1 homolog, promotes assembly of yeast microtubules by increasing growth rate and decreasing catastrophe frequency.

Podolski M, Mahamdeh M, Howard J.

J Biol Chem. 2014 Oct 10;289(41):28087-93. doi: 10.1074/jbc.M114.584300. Epub 2014 Aug 29.

8.
9.

Structure-function analysis of yeast tubulin.

Luchniak A, Fukuda Y, Gupta ML Jr.

Methods Cell Biol. 2013;115:355-74. doi: 10.1016/B978-0-12-407757-7.00022-0.

10.

A tethered delivery mechanism explains the catalytic action of a microtubule polymerase.

Ayaz P, Munyoki S, Geyer EA, Piedra FA, Vu ES, Bromberg R, Otwinowski Z, Grishin NV, Brautigam CA, Rice LM.

Elife. 2014 Aug 5;3:e03069. doi: 10.7554/eLife.03069.

11.

Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics.

Nithianantham S, Le S, Seto E, Jia W, Leary J, Corbett KD, Moore JK, Al-Bassam J.

Elife. 2015 Jul 24;4. doi: 10.7554/eLife.08811.

12.
13.

Function of tubulin binding proteins in vivo.

Fleming JA, Vega LR, Solomon F.

Genetics. 2000 Sep;156(1):69-80.

14.

The nucleotide switch of tubulin and microtubule assembly: a polymerization-driven structural change.

Buey RM, Díaz JF, Andreu JM.

Biochemistry. 2006 May 16;45(19):5933-8.

PMID:
16681364
15.

Insights into microtubule nucleation from the crystal structure of human gamma-tubulin.

Aldaz H, Rice LM, Stearns T, Agard DA.

Nature. 2005 May 26;435(7041):523-7.

PMID:
15917813
16.

A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics.

Geyer EA, Burns A, Lalonde BA, Ye X, Piedra FA, Huffaker TC, Rice LM.

Elife. 2015 Oct 6;4:e10113. doi: 10.7554/eLife.10113.

17.
18.

Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle.

Siligardi G, Hu B, Panaretou B, Piper PW, Pearl LH, Prodromou C.

J Biol Chem. 2004 Dec 10;279(50):51989-98. Epub 2004 Oct 2.

19.

Mutation in the beta-tubulin signature motif suppresses microtubule GTPase activity and dynamics, and slows mitosis.

Dougherty CA, Sage CR, Davis A, Farrell KW.

Biochemistry. 2001 Dec 25;40(51):15725-32.

PMID:
11747449
20.

Dominant effects of tubulin overexpression in Saccharomyces cerevisiae.

Burke D, Gasdaska P, Hartwell L.

Mol Cell Biol. 1989 Mar;9(3):1049-59.

Supplemental Content

Support Center