Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Host S-nitrosylation inhibits clostridial small molecule-activated glucosylating toxins.

Savidge TC, Urvil P, Oezguen N, Ali K, Choudhury A, Acharya V, Pinchuk I, Torres AG, English RD, Wiktorowicz JE, Loeffelholz M, Kumar R, Shi L, Nie W, Braun W, Herman B, Hausladen A, Feng H, Stamler JS, Pothoulakis C.

Nat Med. 2011 Aug 21;17(9):1136-41. doi: 10.1038/nm.2405.

2.

Neutralizing hospital-acquired infections.

Harrington M.

Lab Anim (NY). 2011 Sep 21;40(10):288. doi: 10.1038/laban1011-288b. No abstract available.

PMID:
22358194
3.

Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins.

Shen A, Lupardus PJ, Gersch MM, Puri AW, Albrow VE, Garcia KC, Bogyo M.

Nat Struct Mol Biol. 2011 Mar;18(3):364-71. doi: 10.1038/nsmb.1990. Epub 2011 Feb 13.

4.

Inositol hexakisphosphate-dependent processing of Clostridium sordellii lethal toxin and Clostridium novyi alpha-toxin.

Guttenberg G, Papatheodorou P, Genisyuerek S, Lü W, Jank T, Einsle O, Aktories K.

J Biol Chem. 2011 Apr 29;286(17):14779-86. doi: 10.1074/jbc.M110.200691. Epub 2011 Mar 8.

5.

Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.

Egerer M, Giesemann T, Jank T, Satchell KJ, Aktories K.

J Biol Chem. 2007 Aug 31;282(35):25314-21. Epub 2007 Jun 25.

6.

Processing of Clostridium difficile toxins.

Giesemann T, Egerer M, Jank T, Aktories K.

J Med Microbiol. 2008 Jun;57(Pt 6):690-6. doi: 10.1099/jmm.0.47742-0. Review.

PMID:
18480324
7.

Autoproteolytic activation of bacterial toxins.

Shen A.

Toxins (Basel). 2010 May;2(5):963-77. doi: 10.3390/toxins2050963. Epub 2010 May 6. Review.

8.

Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.

Egerer M, Giesemann T, Herrmann C, Aktories K.

J Biol Chem. 2009 Feb 6;284(6):3389-95. doi: 10.1074/jbc.M806002200. Epub 2008 Dec 1.

9.

Toxin B is essential for virulence of Clostridium difficile.

Lyras D, O'Connor JR, Howarth PM, Sambol SP, Carter GP, Phumoonna T, Poon R, Adams V, Vedantam G, Johnson S, Gerding DN, Rood JI.

Nature. 2009 Apr 30;458(7242):1176-9. doi: 10.1038/nature07822. Epub 2009 Mar 1.

10.

Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A.

Pruitt RN, Chagot B, Cover M, Chazin WJ, Spiller B, Lacy DB.

J Biol Chem. 2009 Aug 14;284(33):21934-40. doi: 10.1074/jbc.M109.018929. Epub 2009 Jun 24.

11.

Identification of a novel virulence factor in Clostridium difficile that modulates toxin sensitivity of cultured epithelial cells.

Miura M, Kato H, Matsushita O.

Infect Immun. 2011 Sep;79(9):3810-20. doi: 10.1128/IAI.00051-11. Epub 2011 Jul 11.

12.

Masking autoprocessing of Clostridium difficile toxin A by the C-terminus combined repetitive oligo peptides.

Zhang Y, Hamza T, Gao S, Feng H.

Biochem Biophys Res Commun. 2015 Apr 3;459(2):259-63. doi: 10.1016/j.bbrc.2015.02.095. Epub 2015 Feb 26.

13.

Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function.

Jank T, Giesemann T, Aktories K.

Glycobiology. 2007 Apr;17(4):15R-22R. Epub 2007 Jan 19. Review.

PMID:
17237138
14.

The role of toxin A and toxin B in the virulence of Clostridium difficile.

Carter GP, Rood JI, Lyras D.

Trends Microbiol. 2012 Jan;20(1):21-9. doi: 10.1016/j.tim.2011.11.003. Epub 2011 Dec 7. Review.

PMID:
22154163
15.

Toward a structural understanding of Clostridium difficile toxins A and B.

Pruitt RN, Lacy DB.

Front Cell Infect Microbiol. 2012 Mar 16;2:28. doi: 10.3389/fcimb.2012.00028. eCollection 2012. Review.

16.

Clostridial toxins: sensing a target in a hostile gut environment.

Oezguen N, Power TD, Urvil P, Feng H, Pothoulakis C, Stamler JS, Braun W, Savidge TC.

Gut Microbes. 2012 Jan-Feb;3(1):35-41. doi: 10.4161/gmic.19250. Epub 2012 Jan 1. Review.

17.

Defining the Roles of TcdA and TcdB in Localized Gastrointestinal Disease, Systemic Organ Damage, and the Host Response during Clostridium difficile Infections.

Carter GP, Chakravorty A, Pham Nguyen TA, Mileto S, Schreiber F, Li L, Howarth P, Clare S, Cunningham B, Sambol SP, Cheknis A, Figueroa I, Johnson S, Gerding D, Rood JI, Dougan G, Lawley TD, Lyras D.

MBio. 2015 Jun 2;6(3):e00551. doi: 10.1128/mBio.00551-15.

18.

Substrate specificity of clostridial glucosylating toxins and their function on colonocytes analyzed by proteomics techniques.

Zeiser J, Gerhard R, Just I, Pich A.

J Proteome Res. 2013 Apr 5;12(4):1604-18. doi: 10.1021/pr300973q. Epub 2013 Mar 4.

PMID:
23387933
19.

Autoproteolytic cleavage mediates cytotoxicity of Clostridium difficile toxin A.

Kreimeyer I, Euler F, Marckscheffel A, Tatge H, Pich A, Olling A, Schwarz J, Just I, Gerhard R.

Naunyn Schmiedebergs Arch Pharmacol. 2011 Mar;383(3):253-62. doi: 10.1007/s00210-010-0574-x. Epub 2010 Nov 3.

PMID:
21046073
20.

Clostridium difficile Toxin A Undergoes Clathrin-Independent, PACSIN2-Dependent Endocytosis.

Chandrasekaran R, Kenworthy AK, Lacy DB.

PLoS Pathog. 2016 Dec 12;12(12):e1006070. doi: 10.1371/journal.ppat.1006070. eCollection 2016 Dec.

Supplemental Content

Support Center