Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Femtosecond laser treatment of the crystalline lens: a 1-year study of possible cataractogenesis in minipigs.

Ackermann R, Kunert KS, Kammel R, Bischoff S, Bühren SC, Schubert H, Blum M, Nolte S.

Graefes Arch Clin Exp Ophthalmol. 2011 Oct;249(10):1567-73. doi: 10.1007/s00417-011-1772-z. Epub 2011 Aug 19.

PMID:
21853231
2.

First safety study of femtosecond laser photodisruption in animal lenses: tissue morphology and cataractogenesis.

Krueger RR, Kuszak J, Lubatschowski H, Myers RI, Ripken T, Heisterkamp A.

J Cataract Refract Surg. 2005 Dec;31(12):2386-94.

PMID:
16473236
3.

[In vitro and in vivo investigations on the treatment of presbyopia using femtosecond lasers].

Gerten G, Ripken T, Breitenfeld P, Krueger RR, Kermani O, Lubatschowski H, Oberheide U.

Ophthalmologe. 2007 Jan;104(1):40-6. German.

PMID:
16874535
4.

In vivo application and imaging of intralenticular femtosecond laser pulses for the restoration of accommodation.

Schumacher S, Fromm M, Oberheide U, Gerten G, Wegener A, Lubatschowski H.

J Refract Surg. 2008 Nov;24(9):991-5.

PMID:
19044246
5.

Femtosecond laser induced flexibility change of human donor lenses.

Schumacher S, Oberheide U, Fromm M, Ripken T, Ertmer W, Gerten G, Wegener A, Lubatschowski H.

Vision Res. 2009 Jul;49(14):1853-9. doi: 10.1016/j.visres.2009.04.028. Epub 2009 May 8.

6.

Visualization of femtosecond laser pulse-induced microincisions inside crystalline lens tissue.

Stachs O, Schumacher S, Hovakimyan M, Fromm M, Heisterkamp A, Lubatschowski H, Guthoff R.

J Cataract Refract Surg. 2009 Nov;35(11):1979-83. doi: 10.1016/j.jcrs.2009.06.019.

PMID:
19878832
7.

fs-Laser induced elasticity changes to improve presbyopic lens accommodation.

Ripken T, Oberheide U, Fromm M, Schumacher S, Gerten G, Lubatschowski H.

Graefes Arch Clin Exp Ophthalmol. 2008 Jun;246(6):897-906. Epub 2007 Nov 21.

PMID:
18030488
8.

Changes in the crystalline lens resulting from insertion of a phakic IOL (ICL) into the porcine eye.

Fujisawa K, Shimizu K, Uga S, Suzuki M, Nagano K, Murakami Y, Goseki H.

Graefes Arch Clin Exp Ophthalmol. 2007 Jan;245(1):114-22. Epub 2006 Apr 25.

PMID:
16639622
9.

Lens opacity after neodymium: YAG laser iridectomy for phakic intraocular lens implantation.

Zadok D, Chayet A.

J Cataract Refract Surg. 1999 Apr;25(4):592-3.

PMID:
10198870
10.

Implantable contact lens for moderate to high myopia: relationship of vaulting to cataract formation.

Gonvers M, Bornet C, Othenin-Girard P.

J Cataract Refract Surg. 2003 May;29(5):918-24.

PMID:
12781276
11.

[fs-Lentotomy: presbyopia reversal by generating gliding planes inside the crystalline lens].

Lubatschowski H, Schumacher S, Wegener A, Fromm M, Oberheide U, Hoffmann H, Gerten G.

Klin Monbl Augenheilkd. 2009 Dec;226(12):984-90. doi: 10.1055/s-0028-1109941. Epub 2009 Dec 15. German.

PMID:
20108193
12.

Effect of a suction device for femtosecond laser on anterior chamber depth and crystalline lens position measured by OCT.

Kunert KS, Blum M, Reich M, Dick M, Russmann C.

J Refract Surg. 2009 Nov;25(11):1005-11. doi: 10.3928/1081597X-20091016-06. Epub 2009 Nov 13.

PMID:
19921769
13.

Focal laser photophacoablation of normal and cataractous lenses in rabbits: preliminary report.

Gwon A, Fankhauser F 2nd, Puliafito C, Gruber L, Berns M.

J Cataract Refract Surg. 1995 May;21(3):282-6.

PMID:
7674163
14.

An in vitro study on focusing fs-laser pulses into ocular media for ophthalmic surgery.

Merker M, Ackermann R, Kammel R, Kunert KS, Nolte S.

Lasers Surg Med. 2013 Nov;45(9):589-96. doi: 10.1002/lsm.22179. Epub 2013 Sep 17.

PMID:
24105636
15.

Perforation rosette of the lens after Nd:YAG laser iridotomy.

Wollensak G, Eberwein P, Funk J.

Am J Ophthalmol. 1997 Apr;123(4):555-7.

PMID:
9124258
16.

Femtosecond lentotomy: generating gliding planes inside the crystalline lens to regain accommodation ability.

Lubatschowski H, Schumacher S, Fromm M, Wegener A, Hoffmann H, Oberheide U, Gerten G.

J Biophotonics. 2010 Jun;3(5-6):265-8. doi: 10.1002/jbio.201000013.

PMID:
20437418
17.

Modelling cortical cataractogenesis. X. Evaluation of lens optical function by computer based image analysis using in vitro rat lens elevated glucose model.

Mitton KP, Dzialoszynski T, Weerheim J, Trevithick JR, Sivak JG.

Lens Eye Toxic Res. 1989;6(1-2):211-28.

PMID:
2488018
18.

Excessive maternal caffeine exposure during pregnancy is cataractogenic for neonatal crystalline lenses in rats: a biomicroscopic and histopathologic study.

Evereklioglu C, Güldür E, Alasehirli B, Cengiz B, Sari I, Pirbudak L.

Acta Ophthalmol Scand. 2004 Oct;82(5):552-6.

19.

[Histological characteristics of ocular structures after YAG-laser exposure of various sections of the crystalline lens in experimental studies].

Karim KhA, Mamedov NG, Kaplina AV, Kolesnikov DO.

Vestn Oftalmol. 1992 May-Jun;108(3):10-4. Russian.

PMID:
1481319
20.

[Crystalline lens photodisruption using femtosecond laser: experimental study].

Chatoux O, Touboul D, Buestel C, Balcou P, Colin J.

J Fr Ophtalmol. 2010 Sep;33(7):472-80. doi: 10.1016/j.jfo.2010.06.008. French.

Supplemental Content

Support Center