Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 111

1.

Characterization of a potent antimicrobial lipopeptide via coarse-grained molecular dynamics.

Horn JN, Sengillo JD, Lin D, Romo TD, Grossfield A.

Biochim Biophys Acta. 2012 Feb;1818(2):212-8. doi: 10.1016/j.bbamem.2011.07.025.

2.

Simulating the mechanism of antimicrobial lipopeptides with all-atom molecular dynamics.

Horn JN, Romo TD, Grossfield A.

Biochemistry. 2013 Aug 20;52(33):5604-10. doi: 10.1021/bi400773q.

3.

Simulating the antimicrobial mechanism of human β-defensin-3 with coarse-grained molecular dynamics.

Zhao X, Yu H, Yang L, Li Q, Huang X.

J Biomol Struct Dyn. 2015;33(11):2522-9. doi: 10.1080/07391102.2014.1002424.

PMID:
25562440
4.

Thermodynamics of antimicrobial lipopeptide binding to membranes: origins of affinity and selectivity.

Lin D, Grossfield A.

Biophys J. 2014 Oct 21;107(8):1862-72. doi: 10.1016/j.bpj.2014.08.026.

5.

Thermodynamics of Micelle Formation and Membrane Fusion Modulate Antimicrobial Lipopeptide Activity.

Lin D, Grossfield A.

Biophys J. 2015 Aug 18;109(4):750-9. doi: 10.1016/j.bpj.2015.07.011.

6.

Self-assembly and interactions of short antimicrobial cationic lipopeptides with membrane lipids: ITC, FTIR and molecular dynamics studies.

Sikorska E, Dawgul M, Greber K, Iłowska E, Pogorzelska A, Kamysz W.

Biochim Biophys Acta. 2014 Oct;1838(10):2625-34. doi: 10.1016/j.bbamem.2014.06.016.

7.

The importance of membrane defects-lessons from simulations.

Bennett WF, Tieleman DP.

Acc Chem Res. 2014 Aug 19;47(8):2244-51. doi: 10.1021/ar4002729.

PMID:
24892900
8.

Interactions between fengycin and model bilayers quantified by coarse-grained molecular dynamics.

Horn JN, Cravens A, Grossfield A.

Biophys J. 2013 Oct 1;105(7):1612-23. doi: 10.1016/j.bpj.2013.08.034.

10.

Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.

Tsai CW, Hsu NY, Wang CH, Lu CY, Chang Y, Tsai HH, Ruaan RC.

J Mol Biol. 2009 Sep 25;392(3):837-54. doi: 10.1016/j.jmb.2009.06.071.

PMID:
19576903
11.

Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.

Zhao J, Zhao C, Liang G, Zhang M, Zheng J.

J Chem Inf Model. 2013 Dec 23;53(12):3280-96. doi: 10.1021/ci400477e.

PMID:
24279498
12.

Computational insight in the role of fusogenic lipopeptides at the onset of liposome fusion.

Bulacu M, Sevink GJ.

Biochim Biophys Acta. 2015 Mar;1848(3):848-58. doi: 10.1016/j.bbamem.2014.12.010. Corrected and republished in: Biochim Biophys Acta. 2015 Aug;1848(8):1716-25.

13.

Interactions of a class IIb bacteriocin with a model lipid bilayer, investigated through molecular dynamics simulations.

Kyriakou PK, Ekblad B, Kristiansen PE, Kaznessis YN.

Biochim Biophys Acta. 2016 Apr;1858(4):824-35. doi: 10.1016/j.bbamem.2016.01.005.

PMID:
26774214
14.

Interaction of Piscidin-1 with zwitterionic versus anionic membranes: a comparative molecular dynamics study.

Rahmanpour A, Ghahremanpour MM, Mehrnejad F, Moghaddam ME.

J Biomol Struct Dyn. 2013 Dec;31(12):1393-403. doi: 10.1080/07391102.2012.737295.

PMID:
23140320
15.
16.

Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations.

Bocchinfuso G, Palleschi A, Orioni B, Grande G, Formaggio F, Toniolo C, Park Y, Hahm KS, Stella L.

J Pept Sci. 2009 Sep;15(9):550-8. doi: 10.1002/psc.1144.

PMID:
19455510
17.

Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane.

Tolokh IS, Vivcharuk V, Tomberli B, Gray CG.

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031911.

PMID:
19905150
18.
19.

Theoretical insight into the relationship between the structures of antimicrobial peptides and their actions on bacterial membranes.

Chen L, Li X, Gao L, Fang W.

J Phys Chem B. 2015 Jan 22;119(3):850-60. doi: 10.1021/jp505497k.

PMID:
25062757
20.

Molecular dynamics methods to predict peptide locations in membranes: LAH4 as a stringent test case.

Farrotti A, Bocchinfuso G, Palleschi A, Rosato N, Salnikov ES, Voievoda N, Bechinger B, Stella L.

Biochim Biophys Acta. 2015 Feb;1848(2):581-92. doi: 10.1016/j.bbamem.2014.11.002.

Items per page

Supplemental Content

Support Center