Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 183

1.

Satellite methods underestimate indirect climate forcing by aerosols.

Penner JE, Xu L, Wang M.

Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13404-8. doi: 10.1073/pnas.1018526108.

2.

Contribution of anthropogenic aerosols in direct radiative forcing and atmospheric heating rate over Delhi in the Indo-Gangetic Basin.

Srivastava AK, Singh S, Tiwari S, Bisht DS.

Environ Sci Pollut Res Int. 2012 May;19(4):1144-58. doi: 10.1007/s11356-011-0633-y.

PMID:
22006505
3.

Global estimate of aerosol direct radiative forcing from satellite measurements.

Bellouin N, Boucher O, Haywood J, Reddy MS.

Nature. 2005 Dec 22;438(7071):1138-41.

PMID:
16372005
4.

Direct radiative forcing due to aerosols in Asia during March 2002.

Park SU, Jeong JI.

Sci Total Environ. 2008 Dec 15;407(1):394-404. doi: 10.1016/j.scitotenv.2008.07.041.

PMID:
18804844
5.

Aerosol optical and radiative properties observed at Anmyeon and Jeju, Korea in the spring of 2000 and 2001.

Oh SN, Sohn BJ, Lee SS.

Environ Monit Assess. 2004 Mar;92(1-3):95-115.

PMID:
15038538
6.

Which of satellite- or model-based estimates is closer to reality for aerosol indirect forcing?

Quaas J, Boucher O, Bellouin N, Kinne S.

Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):E1099; author reply E1100-1. doi: 10.1073/pnas.1114634108. No abstract available.

7.
8.

Boundary layer aerosol characteristics at Mahabubnagar during CAIPEEX-IGOC: modeling the optical and radiative properties.

Srivastava AK, Bisht DS, Tiwari S.

Sci Total Environ. 2014 Jan 15;468-469:1093-102. doi: 10.1016/j.scitotenv.2013.09.039.

PMID:
24103256
9.

Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model.

Wang Y, Wang M, Zhang R, Ghan SJ, Lin Y, Hu J, Pan B, Levy M, Jiang JH, Molina MJ.

Proc Natl Acad Sci U S A. 2014 May 13;111(19):6894-9. doi: 10.1073/pnas.1403364111.

10.

Radiative effects of aerosols over Indo-Gangetic plain: environmental (urban vs. rural) and seasonal variations.

Ramachandran S, Kedia S.

Environ Sci Pollut Res Int. 2012 Jul;19(6):2159-71. doi: 10.1007/s11356-011-0715-x.

PMID:
22231371
11.

Asian aerosols: current and year 2030 distributions and implications to human health and regional climate change.

Carmichael GR, Adhikary B, Kulkarni S, D'Allura A, Tang Y, Streets D, Zhang Q, Bond TC, Ramanathan V, Jamroensan A, Marrapu P.

Environ Sci Technol. 2009 Aug 1;43(15):5811-7.

PMID:
19731681
12.

An improved method for estimating surface fine particle concentrations using seasonally adjusted satellite aerosol optical depth.

Weber SA, Engel-Cox JA, Hoff RM, Prados AI, Zhang H.

J Air Waste Manag Assoc. 2010 May;60(5):574-85.

PMID:
20480857
13.
14.
15.
16.
17.

Columnar aerosol characteristics and radiative forcing over the Doon Valley in the Shivalik range of northwestern Himalayas.

Dumka UC, Saheb SD, Kaskaoutis DG, Kant Y, Mitra D.

Environ Sci Pollut Res Int. 2016 Dec;23(24):25467-25484.

PMID:
27704378
18.

Aerosol optical properties and radiative effects over Manora Peak in the Himalayan foothills: seasonal variability and role of transported aerosols.

Srivastava AK, Ram K, Singh S, Kumar S, Tiwari S.

Sci Total Environ. 2015 Jan 1;502:287-95. doi: 10.1016/j.scitotenv.2014.09.015.

PMID:
25261819
19.

Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: development and application.

van Donkelaar A, Martin RV, Brauer M, Kahn R, Levy R, Verduzco C, Villeneuve PJ.

Environ Health Perspect. 2010 Jun;118(6):847-55. doi: 10.1289/ehp.0901623.

20.

Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number.

Saide PE, Carmichael GR, Spak SN, Minnis P, Ayers JK.

Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):11939-43. doi: 10.1073/pnas.1205877109.

Supplemental Content

Support Center