Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

Comparative genomics of xylose-fermenting fungi for enhanced biofuel production.

Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA, Labutti KM, Sun H, Clum A, Pangilinan JL, Lindquist EA, Lucas S, Lapidus A, Jin M, Gunawan C, Balan V, Dale BE, Jeffries TW, Zinkel R, Barry KW, Grigoriev IV, Gasch AP.

Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13212-7. doi: 10.1073/pnas.1103039108. Epub 2011 Jul 25.

2.

Genetic improvement of native xylose-fermenting yeasts for ethanol production.

Harner NK, Wen X, Bajwa PK, Austin GD, Ho CY, Habash MB, Trevors JT, Lee H.

J Ind Microbiol Biotechnol. 2015 Jan;42(1):1-20. doi: 10.1007/s10295-014-1535-z. Epub 2014 Nov 18. Review.

PMID:
25404205
3.

Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.

Wei N, Oh EJ, Million G, Cate JH, Jin YS.

ACS Synth Biol. 2015 Jun 19;4(6):707-13. doi: 10.1021/sb500364q. Epub 2015 Jan 27.

PMID:
25587748
4.
5.

Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae.

Matsushika A, Goshima T, Fujii T, Inoue H, Sawayama S, Yano S.

Enzyme Microb Technol. 2012 Jun 10;51(1):16-25. doi: 10.1016/j.enzmictec.2012.03.008. Epub 2012 Apr 4.

PMID:
22579386
6.

Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass.

Kim JH, Block DE, Mills DA.

Appl Microbiol Biotechnol. 2010 Nov;88(5):1077-85. doi: 10.1007/s00253-010-2839-1. Epub 2010 Sep 14. Review.

7.

Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism.

Kim SR, Park YC, Jin YS, Seo JH.

Biotechnol Adv. 2013 Nov;31(6):851-61. doi: 10.1016/j.biotechadv.2013.03.004. Epub 2013 Mar 21. Review.

PMID:
23524005
8.

Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast.

Wei N, Quarterman J, Kim SR, Cate JH, Jin YS.

Nat Commun. 2013;4:2580. doi: 10.1038/ncomms3580.

PMID:
24105024
9.
10.

Chemical and Synthetic Genetic Array Analysis Identifies Genes that Suppress Xylose Utilization and Fermentation in Saccharomyces cerevisiae.

Usher J, Balderas-Hernandez V, Quon P, Gold ND, Martin VJ, Mahadevan R, Baetz K.

G3 (Bethesda). 2011 Sep;1(4):247-58. doi: 10.1534/g3.111.000695. Epub 2011 Sep 1.

11.

The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisiae increases xylose uptake in SSCF of wheat straw.

Fonseca C, Olofsson K, Ferreira C, Runquist D, Fonseca LL, Hahn-Hägerdal B, Lidén G.

Enzyme Microb Technol. 2011 May 6;48(6-7):518-25. doi: 10.1016/j.enzmictec.2011.02.010. Epub 2011 Mar 9.

PMID:
22113025
12.

Rewiring yeast sugar transporter preference through modifying a conserved protein motif.

Young EM, Tong A, Bui H, Spofford C, Alper HS.

Proc Natl Acad Sci U S A. 2014 Jan 7;111(1):131-6. doi: 10.1073/pnas.1311970111. Epub 2013 Dec 16.

13.

Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation.

Kim SR, Lee KS, Kong II, Lesmana A, Lee WH, Seo JH, Kweon DH, Jin YS.

J Biotechnol. 2013 Mar 10;164(1):105-11. doi: 10.1016/j.jbiotec.2012.12.012. Epub 2013 Jan 29.

PMID:
23376240
14.

Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production.

Peris D, Moriarty RV, Alexander WG, Baker E, Sylvester K, Sardi M, Langdon QK, Libkind D, Wang QM, Bai FY, Leducq JB, Charron G, Landry CR, Sampaio JP, Gonçalves P, Hyma KE, Fay JC, Sato TK, Hittinger CT.

Biotechnol Biofuels. 2017 Mar 27;10:78. doi: 10.1186/s13068-017-0763-7. eCollection 2017.

15.

Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase.

Matsushika A, Sawayama S.

Enzyme Microb Technol. 2011 May 6;48(6-7):466-71. doi: 10.1016/j.enzmictec.2011.02.002. Epub 2011 Mar 2.

PMID:
22113018
16.

Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum.

Long TM, Su YK, Headman J, Higbee A, Willis LB, Jeffries TW.

Appl Environ Microbiol. 2012 Aug;78(16):5492-500. doi: 10.1128/AEM.00374-12. Epub 2012 May 25.

17.

Anaerobic xylose fermentation by Spathaspora passalidarum.

Hou X.

Appl Microbiol Biotechnol. 2012 Apr;94(1):205-14. doi: 10.1007/s00253-011-3694-4. Epub 2011 Nov 30.

PMID:
22124720
18.

Time-based comparative transcriptomics in engineered xylose-utilizing Saccharomyces cerevisiae identifies temperature-responsive genes during ethanol production.

Ismail KS, Sakamoto T, Hasunuma T, Kondo A.

J Ind Microbiol Biotechnol. 2013 Sep;40(9):1039-50. doi: 10.1007/s10295-013-1293-3. Epub 2013 Jun 9.

PMID:
23748446
19.

Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels.

Li X, Yu VY, Lin Y, Chomvong K, Estrela R, Park A, Liang JM, Znameroski EA, Feehan J, Kim SR, Jin YS, Glass NL, Cate JH.

Elife. 2015 Feb 3;4. doi: 10.7554/eLife.05896.

20.

Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae.

Ghosh A, Zhao H, Price ND.

PLoS One. 2011;6(11):e27316. doi: 10.1371/journal.pone.0027316. Epub 2011 Nov 4.

Supplemental Content

Support Center