Format
Sort by

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.

Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery.

Siegwart DJ, Whitehead KA, Nuhn L, Sahay G, Cheng H, Jiang S, Ma M, Lytton-Jean A, Vegas A, Fenton P, Levins CG, Love KT, Lee H, Cortez C, Collins SP, Li YF, Jang J, Querbes W, Zurenko C, Novobrantseva T, Langer R, Anderson DG.

Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):12996-3001. doi: 10.1073/pnas.1106379108.

2.

Self-assembly cationic nanoparticles based on cholesterol-grafted bioreducible poly(amidoamine) for siRNA delivery.

Chen CJ, Wang JC, Zhao EY, Gao LY, Feng Q, Liu XY, Zhao ZX, Ma XF, Hou WJ, Zhang LR, Lu WL, Zhang Q.

Biomaterials. 2013 Jul;34(21):5303-16. doi: 10.1016/j.biomaterials.2013.03.056.

PMID:
23570718
3.

Cationic fluorescent polymer core-shell nanoparticles for encapsulation, delivery, and non-invasively tracking the intracellular release of siRNA.

Yu JC, Zhu S, Feng PJ, Qian CG, Huang J, Sun MJ, Shen QD.

Chem Commun (Camb). 2015 Feb 18;51(14):2976-9. doi: 10.1039/c4cc09685a.

PMID:
25597349
4.

Reversal of P-glycoprotein-mediated multidrug resistance by CD44 antibody-targeted nanocomplexes for short hairpin RNA-encoding plasmid DNA delivery.

Gu J, Fang X, Hao J, Sha X.

Biomaterials. 2015 Mar;45:99-114. doi: 10.1016/j.biomaterials.2014.12.030.

PMID:
25662500
5.

Combinatorial Approach to Nanoarchitectonics for Nonviral Delivery of Nucleic Acids.

Molla MR, Levkin PA.

Adv Mater. 2016 Feb 10;28(6):1159-75. doi: 10.1002/adma.201502888.

PMID:
26608939
6.

PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy.

Xie Y, Qiao H, Su Z, Chen M, Ping Q, Sun M.

Biomaterials. 2014 Sep;35(27):7978-91. doi: 10.1016/j.biomaterials.2014.05.068.

PMID:
24939077
7.

Cationic drug-derived nanoparticles for multifunctional delivery of anticancer siRNA.

Chang RS, Suh MS, Kim S, Shim G, Lee S, Han SS, Lee KE, Jeon H, Choi HG, Choi Y, Kim CW, Oh YK.

Biomaterials. 2011 Dec;32(36):9785-95. doi: 10.1016/j.biomaterials.2011.09.017.

PMID:
21937102
8.

Combinatorial library strategies for synthesis of cationic lipid-like nanoparticles and their potential medical applications.

Altınoglu S, Wang M, Xu Q.

Nanomedicine (Lond). 2015 Mar;10(4):643-57. doi: 10.2217/nnm.14.192. Review.

PMID:
25723096
9.

N-Alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery.

Liu G, Xie J, Zhang F, Wang Z, Luo K, Zhu L, Quan Q, Niu G, Lee S, Ai H, Chen X.

Small. 2011 Oct 4;7(19):2742-9. doi: 10.1002/smll.201100825. Erratum in: Small. 2011 Dec 2;7(23):3260.

10.

Enhanced intracellular siRNA delivery using bioreducible lipid-like nanoparticles.

Wang M, Alberti K, Varone A, Pouli D, Georgakoudi I, Xu Q.

Adv Healthc Mater. 2014 Sep;3(9):1398-403. doi: 10.1002/adhm.201400039.

PMID:
24574196
11.
12.

Degradable cationic shell cross-linked knedel-like nanoparticles: synthesis, degradation, nucleic acid binding, and in vitro evaluation.

Samarajeewa S, Ibricevic A, Gunsten SP, Shrestha R, Elsabahy M, Brody SL, Wooley KL.

Biomacromolecules. 2013 Apr 8;14(4):1018-27. doi: 10.1021/bm3018774.

13.

A combinatorial polymer library approach yields insight into nonviral gene delivery.

Green JJ, Langer R, Anderson DG.

Acc Chem Res. 2008 Jun;41(6):749-59. doi: 10.1021/ar7002336.

14.

Ionizable amphiphilic dendrimer-based nanomaterials with alkyl-chain-substituted amines for tunable siRNA delivery to the liver endothelium in vivo.

Khan OF, Zaia EW, Yin H, Bogorad RL, Pelet JM, Webber MJ, Zhuang I, Dahlman JE, Langer R, Anderson DG.

Angew Chem Int Ed Engl. 2014 Dec 22;53(52):14397-401. doi: 10.1002/anie.201408221.

15.

Polyethylenimine-based amphiphilic core-shell nanoparticles: study of gene delivery and intracellular trafficking.

Siu YS, Li L, Leung MF, Lee KL, Li P.

Biointerphases. 2012 Dec;7(1-4):16. doi: 10.1007/s13758-011-0016-4.

PMID:
22589059
16.

Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging.

Bae KH, Lee K, Kim C, Park TG.

Biomaterials. 2011 Jan;32(1):176-84. doi: 10.1016/j.biomaterials.2010.09.039.

PMID:
20934746
17.

Layer-by-layer nanoparticles as an efficient siRNA delivery vehicle for SPARC silencing.

Tan YF, Mundargi RC, Chen MH, Lessig J, Neu B, Venkatraman SS, Wong TT.

Small. 2014 May 14;10(9):1790-8. doi: 10.1002/smll.201303201.

PMID:
24510544
18.

Core-shell type lipid/rPAA-Chol polymer hybrid nanoparticles for in vivo siRNA delivery.

Gao LY, Liu XY, Chen CJ, Wang JC, Feng Q, Yu MZ, Ma XF, Pei XW, Niu YJ, Qiu C, Pang WH, Zhang Q.

Biomaterials. 2014 Feb;35(6):2066-78. doi: 10.1016/j.biomaterials.2013.11.046.

PMID:
24315577
19.

Multifunctional nanoparticles delivering small interfering RNA and doxorubicin overcome drug resistance in cancer.

Chen Y, Bathula SR, Li J, Huang L.

J Biol Chem. 2010 Jul 16;285(29):22639-50. doi: 10.1074/jbc.M110.125906.

20.

Co-delivery of SOX9 genes and anti-Cbfa-1 siRNA coated onto PLGA nanoparticles for chondrogenesis of human MSCs.

Jeon SY, Park JS, Yang HN, Woo DG, Park KH.

Biomaterials. 2012 Jun;33(17):4413-23. doi: 10.1016/j.biomaterials.2012.02.051.

PMID:
22425025
Items per page

Supplemental Content

Support Center