Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 233

1.

Numerical investigation of Al2O3/water nanofluid laminar convective heat transfer through triangular ducts.

Zeinali Heris S, Noie SH, Talaii E, Sargolzaei J.

Nanoscale Res Lett. 2011 Feb 28;6(1):179. doi: 10.1186/1556-276X-6-179.

2.
3.
4.

Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe.

Balla HH, Abdullah S, Mohdfaizal W, Zulkifli R, Sopian K.

J Oleo Sci. 2013;62(7):533-9.

5.

CFD simulation of the effect of particle size on the nanofluids convective heat transfer in the developed region in a circular tube.

Davarnejad R, Barati S, Kooshki M.

Springerplus. 2013 Apr 30;2(1):192. doi: 10.1186/2193-1801-2-192. Print 2013 Dec.

6.

Forced Convective Heat Transfer of Aqueous Al₂O₃ Nanofluid Through Shell and Tube Heat Exchanger.

Haque AKMM, Kim S, Kim J, Noh J, Huh S, Choi B, Chung H, Jeong H.

J Nanosci Nanotechnol. 2018 Mar 1;18(3):1730-1740. doi: 10.1166/jnn.2018.14216.

PMID:
29448652
7.

Laminar heat transfer and friction factor characteristics of carbon nano tube/water nanofluids.

Rathnakumar P, Mayilsamy K, Suresh S, Murugesan P.

J Nanosci Nanotechnol. 2014 Mar;14(3):2400-7.

PMID:
24745238
8.

Temperature dependence of convective heat transfer with Al2O3 nanofluids in the turbulent flow region.

Kwon Y, Lee K, Park M, Koo K, Lee J, Doh Y, Lee S, Kim D, Jung Y.

J Nanosci Nanotechnol. 2013 Dec;13(12):7902-5.

PMID:
24266161
9.

Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes.

Sasmito AP, Kurnia JC, Mujumdar AS.

Nanoscale Res Lett. 2011 May 9;6(1):376. doi: 10.1186/1556-276X-6-376.

10.

Pressure-drop viscosity measurements for gamma-Al2O nanoparticles in water and PG-water mixtures (nanofluids).

Lai WY, Phelan PE, Prasher RS.

J Nanosci Nanotechnol. 2010 Dec;10(12):8026-34.

PMID:
21121293
11.

Turbulent heat transfer and pressure drop characteristics of dilute water based Al2O3-Cu hybrid nanofluids.

Suresh S, Venkitaraj KP, Hameed MS, Sarangan J.

J Nanosci Nanotechnol. 2014 Mar;14(3):2563-72.

PMID:
24745264
12.

Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.

Teng TP, Hung YH, Teng TC, Chen JH.

Nanoscale Res Lett. 2011 Aug 9;6:488. doi: 10.1186/1556-276X-6-488.

13.

Experimental study of natural convection enhancement using a Fe3O4-water based magnetic nanofluid.

Stoian FD, Holotescu S.

J Nanosci Nanotechnol. 2012 Oct;12(10):8211-4.

PMID:
23421199
14.

Heat transfer and pressure drop characteristics of nanofluids in a plate heat exchanger.

Kwon YH, Kim D, Li CG, Lee JK, Hong DS, Lee JG, Lee SH, Cho YH, Kim SH.

J Nanosci Nanotechnol. 2011 Jul;11(7):5769-74.

PMID:
22121605
15.

Heat transfer enhancement of laminar nanofluids flow in a circular tube fitted with parabolic-cut twisted tape inserts.

Salman SD, Kadhum AA, Takriff MS, Mohamad AB.

ScientificWorldJournal. 2014 Jan 30;2014:543231. doi: 10.1155/2014/543231. eCollection 2014.

16.

Nanofluid heat transfer under mixed convection flow in a tube for solar thermal energy applications.

Sekhar YR, Sharma KV, Kamal S.

Environ Sci Pollut Res Int. 2016 May;23(10):9411-7. doi: 10.1007/s11356-015-5715-9. Epub 2015 Nov 23.

PMID:
26593731
17.

Numerical investigation of heat transfer enhancement in a rectangular heated pipe for turbulent nanofluid.

Yarmand H, Gharehkhani S, Kazi SN, Sadeghinezhad E, Safaei MR.

ScientificWorldJournal. 2014;2014:369593. doi: 10.1155/2014/369593. Epub 2014 Aug 26.

18.

Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes.

Bianco V, Nardini S, Manca O.

Nanoscale Res Lett. 2011 Mar 24;6(1):252. doi: 10.1186/1556-276X-6-252.

19.
20.

Numerical study of natural convection in a horizontal cylinder filled with water-based alumina nanofluid.

Meng X, Li Y.

Nanoscale Res Lett. 2015 Mar 19;10:142. doi: 10.1186/s11671-015-0847-x. eCollection 2015.

Supplemental Content

Support Center