Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Using positional distribution to identify splicing elements and predict pre-mRNA processing defects in human genes.

Lim KH, Ferraris L, Filloux ME, Raphael BJ, Fairbrother WG.

Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11093-8. doi: 10.1073/pnas.1101135108. Epub 2011 Jun 17.

2.
3.

Binding of hnRNP H and U2AF65 to respective G-codes and a poly-uridine tract collaborate in the N50-5'ss selection of the REST N exon in H69 cells.

Ortuño-Pineda C, Galindo-Rosales JM, Calderón-Salinas JV, Villegas-Sepúlveda N, Saucedo-Cárdenas O, De Nova-Ocampo M, Valdés J.

PLoS One. 2012;7(7):e40315. doi: 10.1371/journal.pone.0040315. Epub 2012 Jul 5.

4.

Pre-mRNA splicing in the absence of an SR protein RS domain.

Zhu J, Krainer AR.

Genes Dev. 2000 Dec 15;14(24):3166-78.

5.

Efficient polyadenylation of Rous sarcoma virus RNA requires the negative regulator of splicing element.

Fogel BL, McNally LM, McNally MT.

Nucleic Acids Res. 2002 Feb 1;30(3):810-7.

6.

HnRNP L-mediated regulation of mammalian alternative splicing by interference with splice site recognition.

Heiner M, Hui J, Schreiner S, Hung LH, Bindereif A.

RNA Biol. 2010 Jan-Feb;7(1):56-64. Epub 2010 Jan 21.

PMID:
19946215
7.

Roles for SR proteins and hnRNP A1 in the regulation of c-src exon N1.

Rooke N, Markovtsov V, Cagavi E, Black DL.

Mol Cell Biol. 2003 Mar;23(6):1874-84.

8.
9.

Splicing defects caused by exonic mutations in PKD1 as a new mechanism of pathogenesis in autosomal dominant polycystic kidney disease.

Claverie-Martin F, Gonzalez-Paredes FJ, Ramos-Trujillo E.

RNA Biol. 2015;12(4):369-74. doi: 10.1080/15476286.2015.1014291.

10.

Mutations in the small subunit of the Drosophila U2AF splicing factor cause lethality and developmental defects.

Rudner DZ, Kanaar R, Breger KS, Rio DC.

Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10333-7.

11.
13.

Spliceman--a computational web server that predicts sequence variations in pre-mRNA splicing.

Lim KH, Fairbrother WG.

Bioinformatics. 2012 Apr 1;28(7):1031-2. doi: 10.1093/bioinformatics/bts074. Epub 2012 Feb 10.

14.

The role of U2AF35 and U2AF65 in enhancer-dependent splicing.

Graveley BR, Hertel KJ, Maniatis T.

RNA. 2001 Jun;7(6):806-18.

15.

Suppression of 5' splice-sites through multiple exonic motifs by hnRNP L.

Loh TJ, Choi N, Moon H, Jang HN, Liu Y, Zhou J, Zheng X, Shen H.

Biochim Biophys Acta. 2017 Mar;1860(3):363-373. doi: 10.1016/j.bbagrm.2017.01.010. Epub 2017 Jan 22.

PMID:
28119102
16.

An intron element modulating 5' splice site selection in the hnRNP A1 pre-mRNA interacts with hnRNP A1.

Chabot B, Blanchette M, Lapierre I, La Branche H.

Mol Cell Biol. 1997 Apr;17(4):1776-86.

17.

Identification of motifs that function in the splicing of non-canonical introns.

Murray JI, Voelker RB, Henscheid KL, Warf MB, Berglund JA.

Genome Biol. 2008;9(6):R97. doi: 10.1186/gb-2008-9-6-r97. Epub 2008 Jun 12.

18.

Dual function for U2AF(35) in AG-dependent pre-mRNA splicing.

Guth S, Tange TØ, Kellenberger E, Valcárcel J.

Mol Cell Biol. 2001 Nov;21(22):7673-81.

19.

AG-dependent 3'-splice sites are predisposed to aberrant splicing due to a mutation at the first nucleotide of an exon.

Fu Y, Masuda A, Ito M, Shinmi J, Ohno K.

Nucleic Acids Res. 2011 May;39(10):4396-404. doi: 10.1093/nar/gkr026. Epub 2011 Feb 2.

20.

Supplemental Content

Support Center