Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.

Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol.

Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S.

Nat Chem Biol. 2011 May 22;7(7):445-52. doi: 10.1038/nchembio.580.

PMID:
21602812
2.

Identification of metabolic engineering targets for the enhancement of 1,4-butanediol production in recombinant E. coli using large-scale kinetic models.

Andreozzi S, Chakrabarti A, Soh KC, Burgard A, Yang TH, Van Dien S, Miskovic L, Hatzimanikatis V.

Metab Eng. 2016 May;35:148-59. doi: 10.1016/j.ymben.2016.01.009. Epub 2016 Feb 5.

PMID:
26855240
3.

Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli.

Lee S, Kim B, Park K, Um Y, Lee J.

Appl Biochem Biotechnol. 2012 Apr;166(7):1801-13. doi: 10.1007/s12010-012-9593-z. Epub 2012 Mar 21.

PMID:
22434350
4.

Identification of factors regulating Escherichia coli 2,3-butanediol production by continuous culture and metabolic flux analysis.

Lu M, Lee S, Kim B, Park C, Oh M, Park K, Lee SY, Lee J.

J Microbiol Biotechnol. 2012 May;22(5):659-67.

5.

Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol.

Lian J, Chao R, Zhao H.

Metab Eng. 2014 May;23:92-9. doi: 10.1016/j.ymben.2014.02.003. Epub 2014 Feb 10.

PMID:
24525332
6.

Engineering nonphosphorylative metabolism to generate lignocellulose-derived products.

Tai YS, Xiong M, Jambunathan P, Wang J, Wang J, Stapleton C, Zhang K.

Nat Chem Biol. 2016 Apr;12(4):247-53. doi: 10.1038/nchembio.2020. Epub 2016 Feb 8.

PMID:
26854668
7.

Improvement of (R)-1,3-butanediol production by engineered Escherichia coli.

Kataoka N, Vangnai AS, Tajima T, Nakashimada Y, Kato J.

J Biosci Bioeng. 2013 May;115(5):475-80. doi: 10.1016/j.jbiosc.2012.11.025. Epub 2013 Jan 4.

PMID:
23290993
8.

2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.

Nan H, Seo SO, Oh EJ, Seo JH, Cate JH, Jin YS.

Appl Microbiol Biotechnol. 2014 Jun;98(12):5757-64. doi: 10.1007/s00253-014-5683-x. Epub 2014 Apr 18.

PMID:
24743979
9.

An integrated biotechnology platform for developing sustainable chemical processes.

Barton NR, Burgard AP, Burk MJ, Crater JS, Osterhout RE, Pharkya P, Steer BA, Sun J, Trawick JD, Van Dien SJ, Yang TH, Yim H.

J Ind Microbiol Biotechnol. 2015 Mar;42(3):349-60. doi: 10.1007/s10295-014-1541-1. Epub 2014 Nov 22. Review.

PMID:
25416472
10.

Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli.

Hwang HJ, Park JH, Kim JH, Kong MK, Kim JW, Park JW, Cho KM, Lee PC.

Biotechnol Bioeng. 2014 Jul;111(7):1374-84. doi: 10.1002/bit.25196. Epub 2014 Feb 24.

PMID:
24449476
11.

High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts.

Shin HD, Yoon SH, Wu J, Rutter C, Kim SW, Chen RR.

Bioresour Technol. 2012 Aug;118:367-73. doi: 10.1016/j.biortech.2012.04.100. Epub 2012 May 7.

PMID:
22705958
12.

Constructing a synthetic constitutive metabolic pathway in Escherichia coli for (R, R)-2,3-butanediol production.

Tong YJ, Ji XJ, Shen MQ, Liu LG, Nie ZK, Huang H.

Appl Microbiol Biotechnol. 2016 Jan;100(2):637-47. doi: 10.1007/s00253-015-7013-3. Epub 2015 Oct 1.

PMID:
26428232
13.

Autonomous production of 1,4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli.

Liu H, Lu T.

Metab Eng. 2015 May;29:135-41. doi: 10.1016/j.ymben.2015.03.009. Epub 2015 Mar 18.

PMID:
25796335
14.

Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.

Kay JE, Jewett MC.

Metab Eng. 2015 Nov;32:133-42. doi: 10.1016/j.ymben.2015.09.015. Epub 2015 Sep 30.

PMID:
26428449
15.

Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase.

Köpke M, Gerth ML, Maddock DJ, Mueller AP, Liew F, Simpson SD, Patrick WM.

Appl Environ Microbiol. 2014 Jun;80(11):3394-403. doi: 10.1128/AEM.00301-14. Epub 2014 Mar 21.

16.

Constructing a synthetic metabolic pathway in Escherichia coli to produce the enantiomerically pure (R, R)-2,3-butanediol.

Ji XJ, Liu LG, Shen MQ, Nie ZK, Tong YJ, Huang H.

Biotechnol Bioeng. 2015 May;112(5):1056-9. doi: 10.1002/bit.25512. Epub 2015 Mar 13.

PMID:
25450449
17.

Biocatalytic production of (2S,3S)-2,3-butanediol from diacetyl using whole cells of engineered Escherichia coli.

Li L, Wang Y, Zhang L, Ma C, Wang A, Tao F, Xu P.

Bioresour Technol. 2012 Jul;115:111-6. doi: 10.1016/j.biortech.2011.08.097. Epub 2011 Aug 27.

PMID:
21937220
18.

Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli.

Mazumdar S, Lee J, Oh MK.

Bioresour Technol. 2013 May;136:329-36. doi: 10.1016/j.biortech.2013.03.013. Epub 2013 Mar 14.

PMID:
23567699
19.

Cell Break: How Cell-Free Biology Is Finally Putting the Engineering Back in Bioengineering.

Fischer S.

IEEE Pulse. 2016 Mar-Apr;7(2):13-6. doi: 10.1109/MPUL.2016.2514881.

PMID:
26978845
20.

Biodegradation-inspired bioproduction of methylacetoin and 2-methyl-2,3-butanediol.

Jiang X, Zhang H, Yang J, Zheng Y, Feng D, Liu W, Xu X, Cao Y, Zou H, Zhang R, Cheng T, Jiao F, Xian M.

Sci Rep. 2013;3:2445. doi: 10.1038/srep02445. Erratum in: Sci Rep. 2013;3:3386.

Supplemental Content

Support Center