Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 372

1.

Foxp3 expression in melanoma cells as a possible mechanism of resistance to immune destruction.

Niu J, Jiang C, Li C, Liu L, Li K, Jian Z, Gao T.

Cancer Immunol Immunother. 2011 Aug;60(8):1109-18. doi: 10.1007/s00262-011-1025-3. Epub 2011 May 6.

PMID:
21547596
2.

Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human.

Kang N, Tang L, Li X, Wu D, Li W, Chen X, Cui L, Ba D, He W.

Immunol Lett. 2009 Aug 15;125(2):105-13. doi: 10.1016/j.imlet.2009.06.005. Epub 2009 Jun 17.

PMID:
19539651
3.

Expression of ICOS on human melanoma-infiltrating CD4+CD25highFoxp3+ T regulatory cells: implications and impact on tumor-mediated immune suppression.

Strauss L, Bergmann C, Szczepanski MJ, Lang S, Kirkwood JM, Whiteside TL.

J Immunol. 2008 Mar 1;180(5):2967-80.

4.

[Inhibitory effect of lentiviral-mediated RNA on the expression of Foxp3 protein in melanoma cells].

Chen DJ, Li XS, Zhao H, Shi XL, Zhang HH, Fan ZY, Yao YM, DU N.

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2012 Apr;28(4):337-9. Chinese.

PMID:
22482399
5.
6.

CD4(+) CD25(low) GITR(+) cells: a novel human CD4(+) T-cell population with regulatory activity.

Bianchini R, Bistoni O, Alunno A, Petrillo MG, Ronchetti S, Sportoletti P, Bocci EB, Nocentini G, Gerli R, Riccardi C.

Eur J Immunol. 2011 Aug;41(8):2269-78. doi: 10.1002/eji.201040943. Epub 2011 Jul 4.

7.

Foxp3 expression in pancreatic carcinoma cells as a novel mechanism of immune evasion in cancer.

Hinz S, Pagerols-Raluy L, Oberg HH, Ammerpohl O, Grüssel S, Sipos B, Grützmann R, Pilarsky C, Ungefroren H, Saeger HD, Klöppel G, Kabelitz D, Kalthoff H.

Cancer Res. 2007 Sep 1;67(17):8344-50.

8.

Correlation between the degree of immune activation, production of IL-2 and FOXP3 expression in CD4+CD25+ T regulatory cells in HIV-1 infected persons under HAART.

Terzieva V, Popova D, Kicheva M, Todorova Y, Markova R, Martinova F, Elenkov I, Yankova M.

Int Immunopharmacol. 2009 Jul;9(7-8):831-6. doi: 10.1016/j.intimp.2009.03.009. Epub 2009 Mar 18.

PMID:
19303058
9.

Aurintricarboxylic acid promotes the conversion of naive CD4+CD25- T cells into Foxp3-expressing regulatory T cells.

Lim DG, Park YH, Kim SE, Kim YH, Park CS, Kim SC, Park CG, Han DJ.

Int Immunol. 2011 Sep;23(9):583-92. doi: 10.1093/intimm/dxr058. Epub 2011 Jul 12.

PMID:
21750147
10.

Forced overexpression of either of the two common human Foxp3 isoforms can induce regulatory T cells from CD4(+)CD25(-) cells.

Aarts-Riemens T, Emmelot ME, Verdonck LF, Mutis T.

Eur J Immunol. 2008 May;38(5):1381-90. doi: 10.1002/eji.200737590.

11.
12.

Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro.

Wang DW, Zhou RB, Yao YM, Zhu XM, Yin YM, Zhao GJ, Dong N, Sheng ZY.

J Pharmacol Exp Ther. 2010 Dec;335(3):553-61. doi: 10.1124/jpet.110.169961. Epub 2010 Sep 15.

13.

Absence of amplification of CD4+CD25(high) regulatory T cells during in vitro expansion of tumor-infiltrating lymphocytes in melanoma patients.

Knol AC, Lemaître F, Pandolfino MC, Volteau C, Quéreux G, Saiagh S, Khammari A, Viguier M, Dréno B.

Exp Dermatol. 2008 May;17(5):436-45. doi: 10.1111/j.1600-0625.2007.00681.x. Epub 2008 Feb 27.

PMID:
18312383
14.

TGF-beta1 modulates Foxp3 expression and regulatory activity in distinct CD4+ T cell subsets.

Pyzik M, Piccirillo CA.

J Leukoc Biol. 2007 Aug;82(2):335-46. Epub 2007 May 2.

PMID:
17475784
15.

Immune compartmentalization of T cell subsets in chemically-induced breast cancer.

Fahmi T, Esendagli G, Yilmaz G, Kansu E, Guc D.

Scand J Immunol. 2010 Oct;72(4):339-48. doi: 10.1111/j.1365-3083.2010.02447.x.

16.

Role of STAT3 in CD4+CD25+FOXP3+ regulatory lymphocyte generation: implications in graft-versus-host disease and antitumor immunity.

Pallandre JR, Brillard E, Créhange G, Radlovic A, Remy-Martin JP, Saas P, Rohrlich PS, Pivot X, Ling X, Tiberghien P, Borg C.

J Immunol. 2007 Dec 1;179(11):7593-604.

17.

Expression of tumor necrosis factor-α induced protein 8 like-2 contributes to the immunosuppressive property of CD4(+)CD25(+) regulatory T cells in mice.

Luan YY, Yao YM, Zhang L, Dong N, Zhang QH, Yu Y, Sheng ZY.

Mol Immunol. 2011 Oct;49(1-2):219-26. doi: 10.1016/j.molimm.2011.08.016. Epub 2011 Oct 2.

PMID:
21963221
18.

Detection of Foxp3 protein expression in porcine T lymphocytes.

Käser T, Gerner W, Hammer SE, Patzl M, Saalmüller A.

Vet Immunol Immunopathol. 2008 Sep 15;125(1-2):92-101. doi: 10.1016/j.vetimm.2008.05.007. Epub 2008 May 16.

PMID:
18565594
19.

Skin melanoma development in ret transgenic mice despite the depletion of CD25+Foxp3+ regulatory T cells in lymphoid organs.

Kimpfler S, Sevko A, Ring S, Falk C, Osen W, Frank K, Kato M, Mahnke K, Schadendorf D, Umansky V.

J Immunol. 2009 Nov 15;183(10):6330-7. doi: 10.4049/jimmunol.0900609. Epub 2009 Oct 19.

20.

Utility of tumour-infiltrating CD25+FOXP3+ regulatory T cell evaluation in predicting local recurrence in vertical growth phase cutaneous melanoma.

Miracco C, Mourmouras V, Biagioli M, Rubegni P, Mannucci S, Monciatti I, Cosci E, Tosi P, Luzi P.

Oncol Rep. 2007 Nov;18(5):1115-22.

PMID:
17914561

Supplemental Content

Support Center