Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 144

1.

Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids.

Takimoto JK, Dellas N, Noel JP, Wang L.

ACS Chem Biol. 2011 Jul 15;6(7):733-43. doi: 10.1021/cb200057a. Epub 2011 May 5.

2.

Recognition of non-alpha-amino substrates by pyrrolysyl-tRNA synthetase.

Kobayashi T, Yanagisawa T, Sakamoto K, Yokoyama S.

J Mol Biol. 2009 Feb 6;385(5):1352-60. doi: 10.1016/j.jmb.2008.11.059. Epub 2008 Dec 11.

PMID:
19100747
3.

A novel crystal form of pyrrolysyl-tRNA synthetase reveals the pre- and post-aminoacyl-tRNA synthesis conformational states of the adenylate and aminoacyl moieties and an asparagine residue in the catalytic site.

Yanagisawa T, Sumida T, Ishii R, Yokoyama S.

Acta Crystallogr D Biol Crystallogr. 2013 Jan;69(Pt 1):5-15. doi: 10.1107/S0907444912039881. Epub 2012 Dec 20.

PMID:
23275158
4.

Crystallographic studies on multiple conformational states of active-site loops in pyrrolysyl-tRNA synthetase.

Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S.

J Mol Biol. 2008 May 2;378(3):634-52. doi: 10.1016/j.jmb.2008.02.045. Epub 2008 Feb 29.

PMID:
18387634
5.

Structure of pyrrolysyl-tRNA synthetase, an archaeal enzyme for genetic code innovation.

Kavran JM, Gundllapalli S, O'Donoghue P, Englert M, Söll D, Steitz TA.

Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11268-73. Epub 2007 Jun 25.

6.

Pyrrolysyl-tRNA synthetase-tRNA(Pyl) structure reveals the molecular basis of orthogonality.

Nozawa K, O'Donoghue P, Gundllapalli S, Araiso Y, Ishitani R, Umehara T, Söll D, Nureki O.

Nature. 2009 Feb 26;457(7233):1163-7. doi: 10.1038/nature07611. Epub 2008 Dec 31.

7.

Pyrrolysyl-tRNA synthetase variants reveal ancestral aminoacylation function.

Ko JH, Wang YS, Nakamura A, Guo LT, Söll D, Umehara T.

FEBS Lett. 2013 Oct 1;587(19):3243-8. doi: 10.1016/j.febslet.2013.08.018. Epub 2013 Aug 28.

8.

The amino-terminal domain of pyrrolysyl-tRNA synthetase is dispensable in vitro but required for in vivo activity.

Herring S, Ambrogelly A, Gundllapalli S, O'Donoghue P, Polycarpo CR, Söll D.

FEBS Lett. 2007 Jul 10;581(17):3197-203. Epub 2007 Jun 12.

9.

Structural basis for the site-specific incorporation of lysine derivatives into proteins.

Flügel V, Vrabel M, Schneider S.

PLoS One. 2014 Apr 23;9(4):e96198. doi: 10.1371/journal.pone.0096198. eCollection 2014.

10.

Rationally evolving tRNAPyl for efficient incorporation of noncanonical amino acids.

Fan C, Xiong H, Reynolds NM, Söll D.

Nucleic Acids Res. 2015 Dec 15;43(22):e156. doi: 10.1093/nar/gkv800. Epub 2015 Aug 6.

11.

Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification.

Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S.

Chem Biol. 2008 Nov 24;15(11):1187-97. doi: 10.1016/j.chembiol.2008.10.004.

12.

Pyrrolysine analogs as substrates for bacterial pyrrolysyl-tRNA synthetase in vitro and in vivo.

Katayama H, Nozawa K, Nureki O, Nakahara Y, Hojo H.

Biosci Biotechnol Biochem. 2012;76(1):205-8. Epub 2012 Jan 7.

13.

Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool.

Wan W, Tharp JM, Liu WR.

Biochim Biophys Acta. 2014 Jun;1844(6):1059-70. doi: 10.1016/j.bbapap.2014.03.002. Epub 2014 Mar 12. Review.

14.
15.

Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase.

Polycarpo CR, Herring S, Bérubé A, Wood JL, Söll D, Ambrogelly A.

FEBS Lett. 2006 Dec 11;580(28-29):6695-700. Epub 2006 Nov 20.

16.

Crystallization and preliminary X-ray crystallographic analysis of the catalytic domain of pyrrolysyl-tRNA synthetase from the methanogenic archaeon Methanosarcina mazei.

Yanagisawa T, Ishii R, Fukunaga R, Nureki O, Yokoyama S.

Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006 Oct 1;62(Pt 10):1031-3. Epub 2006 Sep 30.

17.

Expanding the library and substrate diversity of the pyrrolysyl-tRNA synthetase to incorporate unnatural amino acids containing conjugated rings.

Lacey VK, Louie GV, Noel JP, Wang L.

Chembiochem. 2013 Nov 4;14(16):2100-5. doi: 10.1002/cbic.201300400. Epub 2013 Sep 9.

18.

Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency.

Owens AE, Grasso KT, Ziegler CA, Fasan R.

Chembiochem. 2017 Jun 19;18(12):1109-1116. doi: 10.1002/cbic.201700039. Epub 2017 May 16.

PMID:
28383180
19.

Aminoacylation of tRNA 2'- or 3'-hydroxyl by phosphoseryl- and pyrrolysyl-tRNA synthetases.

Englert M, Moses S, Hohn M, Ling J, O'Donoghue P, Söll D.

FEBS Lett. 2013 Oct 11;587(20):3360-4. doi: 10.1016/j.febslet.2013.08.037. Epub 2013 Sep 8.

20.

Liposome-Based in Vitro Evolution of Aminoacyl-tRNA Synthetase for Enhanced Pyrrolysine Derivative Incorporation.

Uyeda A, Watanabe T, Kato Y, Watanabe H, Yomo T, Hohsaka T, Matsuura T.

Chembiochem. 2015 Aug 17;16(12):1797-802. doi: 10.1002/cbic.201500174. Epub 2015 Jul 2.

PMID:
26052693

Supplemental Content

Support Center