Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 94

1.

A one and a two … expanding roles for poly(ADP-ribose) polymerases in metabolism.

Luo X, Kraus WL.

Cell Metab. 2011 Apr 6;13(4):353-5. doi: 10.1016/j.cmet.2011.03.011.

2.

PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation.

Bai P, Cantó C, Oudart H, Brunyánszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper RH, Schoonjans K, Schreiber V, Sauve AA, Menissier-de Murcia J, Auwerx J.

Cell Metab. 2011 Apr 6;13(4):461-8. doi: 10.1016/j.cmet.2011.03.004.

3.

PARP-2 regulates SIRT1 expression and whole-body energy expenditure.

Bai P, Canto C, Brunyánszki A, Huber A, Szántó M, Cen Y, Yamamoto H, Houten SM, Kiss B, Oudart H, Gergely P, Menissier-de Murcia J, Schreiber V, Sauve AA, Auwerx J.

Cell Metab. 2011 Apr 6;13(4):450-60. doi: 10.1016/j.cmet.2011.03.013.

4.

Poly(ADP-ribose) polymerase-1-induced NAD(+) depletion promotes nuclear factor-κB transcriptional activity by preventing p65 de-acetylation.

Kauppinen TM, Gan L, Swanson RA.

Biochim Biophys Acta. 2013 Aug;1833(8):1985-91. doi: 10.1016/j.bbamcr.2013.04.005. Epub 2013 Apr 15.

5.

PARP-1 inhibition does not restore oxidant-mediated reduction in SIRT1 activity.

Caito S, Hwang JW, Chung S, Yao H, Sundar IK, Rahman I.

Biochem Biophys Res Commun. 2010 Feb 12;392(3):264-70. doi: 10.1016/j.bbrc.2009.12.161. Epub 2010 Jan 10.

6.

Cellular NAD depletion and decline of SIRT1 activity play critical roles in PARP-1-mediated acute epileptic neuronal death in vitro.

Wang S, Yang X, Lin Y, Qiu X, Li H, Zhao X, Cao L, Liu X, Pang Y, Wang X, Chi Z.

Brain Res. 2013 Oct 16;1535:14-23. doi: 10.1016/j.brainres.2013.08.038. Epub 2013 Aug 27.

PMID:
23994215
7.

Poly(ADP-ribose) polymerase-2 depletion reduces doxorubicin-induced damage through SIRT1 induction.

Szántó M, Rutkai I, Hegedus C, Czikora Á, Rózsahegyi M, Kiss B, Virág L, Gergely P, Tóth A, Bai P.

Cardiovasc Res. 2011 Dec 1;92(3):430-8. doi: 10.1093/cvr/cvr246. Epub 2011 Sep 15.

PMID:
21921080
8.

Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair.

Dantzer F, Amé JC, Schreiber V, Nakamura J, Ménissier-de Murcia J, de Murcia G.

Methods Enzymol. 2006;409:493-510.

PMID:
16793420
9.

Weight Loss Is Associated With Increased NAD(+)/SIRT1 Expression But Reduced PARP Activity in White Adipose Tissue.

Rappou E, Jukarainen S, Rinnankoski-Tuikka R, Kaye S, Heinonen S, Hakkarainen A, Lundbom J, Lundbom N, Saunavaara V, Rissanen A, Virtanen KA, Pirinen E, Pietiläinen KH.

J Clin Endocrinol Metab. 2016 Mar;101(3):1263-73. doi: 10.1210/jc.2015-3054. Epub 2016 Jan 13.

PMID:
26760174
10.

Glucose deprivation converts poly(ADP-ribose) polymerase-1 hyperactivation into a transient energy-producing process.

Buonvicino D, Formentini L, Cipriani G, Chiarugi A.

J Biol Chem. 2013 Dec 20;288(51):36530-7. doi: 10.1074/jbc.M113.506378. Epub 2013 Nov 5.

11.

Herpes simplex virus 1 infection activates poly(ADP-ribose) polymerase and triggers the degradation of poly(ADP-ribose) glycohydrolase.

Grady SL, Hwang J, Vastag L, Rabinowitz JD, Shenk T.

J Virol. 2012 Aug;86(15):8259-68. doi: 10.1128/JVI.00495-12. Epub 2012 May 23.

12.

New Insights into the Roles of NAD+-Poly(ADP-ribose) Metabolism and Poly(ADP-ribose) Glycohydrolase.

Tanuma S, Sato A, Oyama T, Yoshimori A, Abe H, Uchiumi F.

Curr Protein Pept Sci. 2016;17(7):668-682. Review.

PMID:
27817743
13.

Pharmacological Inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle.

Pirinen E, Cantó C, Jo YS, Morato L, Zhang H, Menzies KJ, Williams EG, Mouchiroud L, Moullan N, Hagberg C, Li W, Timmers S, Imhof R, Verbeek J, Pujol A, van Loon B, Viscomi C, Zeviani M, Schrauwen P, Sauve AA, Schoonjans K, Auwerx J.

Cell Metab. 2014 Jun 3;19(6):1034-41. doi: 10.1016/j.cmet.2014.04.002. Epub 2014 May 8.

14.

Poly(ADP-ribose) polymerase 1 inhibition protects against low shear stress induced inflammation.

Qin WD, Wei SJ, Wang XP, Wang J, Wang WK, Liu F, Gong L, Yan F, Zhang Y, Zhang M.

Biochim Biophys Acta. 2013 Jan;1833(1):59-68. doi: 10.1016/j.bbamcr.2012.10.013. Epub 2012 Oct 22.

15.

The Poly(ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes.

Buelow B, Song Y, Scharenberg AM.

J Biol Chem. 2008 Sep 5;283(36):24571-83. doi: 10.1074/jbc.M802673200. Epub 2008 Jul 3.

16.

Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease.

Gariani K, Ryu D, Menzies KJ, Yi HS, Stein S, Zhang H, Perino A, Lemos V, Katsyuba E, Jha P, Vijgen S, Rubbia-Brandt L, Kim YK, Kim JT, Kim KS, Shong M, Schoonjans K, Auwerx J.

J Hepatol. 2017 Jan;66(1):132-141. doi: 10.1016/j.jhep.2016.08.024. Epub 2016 Sep 20.

18.

Poly(ADP-ribose): PARadigms and PARadoxes.

Bürkle A, Virág L.

Mol Aspects Med. 2013 Dec;34(6):1046-65. doi: 10.1016/j.mam.2012.12.010. Epub 2013 Jan 2. Review.

PMID:
23290998
19.

Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase.

Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA.

J Cereb Blood Flow Metab. 1997 Nov;17(11):1143-51.

PMID:
9390645
20.

Vincristine attenuates N-methyl-N'-nitro-N-nitrosoguanidine-induced poly-(ADP) ribose polymerase activity in cardiomyocytes.

Zhang J, Chatterjee K, Alano CC, Kalinowski MA, Honbo N, Karliner JS.

J Cardiovasc Pharmacol. 2010 Mar;55(3):219-26. doi: 10.1097/FJC.0b013e3181c87e6c.

Supplemental Content

Support Center